Skip to main content

One-Pot Enzymatic Synthesis of Sialyl T-Epitope

  • Protocol
Carbohydrate Biotechnology Protocols

Part of the book series: Methods in Biotechnology™ ((MIBT,volume 10))

Abstract

This chapter demonstrates a practical approach to a rather sophisticated multienzymatic one-pot reaction in glycoscience. The first applications using the multienzyme system in glycosylation were mostly targeted to generation or regeneration of the activated glycosyl donors in situ (kinases, phosphorylation sequences).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Augé, C., Mathieu, C., and Merienne, C. (1986) The use of an immobilised cyclic multi-enzyme system to synthesize branched penta-and hexa-saccharides assiciated with blood-group I epitopes. Carbohydr. Res. 151, 147–156.

    Article  PubMed  Google Scholar 

  2. Thiem, J. and Stangier, P. (1990) Preparative-enzymic formation of cytidine 5′-monophosphosialate by integrated cytidine 5′-triphosphate regeneration. Liebigs Ann. Chem. 1101–1105.

    Google Scholar 

  3. Ichikawa, Y., Shen, G.-J., and Wong, C.-H. (1991) Enzyme-catalyzed synthesis of sialyl oligosaccharide with in situ regeneration of CMP-Sialic acid. J. Am. Chem. Soc. 113, 4698–4700.

    Article  CAS  Google Scholar 

  4. Stangier, P., Treder, W., and Thiem, J. (1993) Chemoenzymatic galactosialylation with integrated cofactor regeneration. Glycoconjugate J. 10, 26–33.

    Article  CAS  Google Scholar 

  5. Křen, V. and Thiem J. (1995) Multienzyme system for a one-pot synthesis of sialyl T-antigen. Angew. Chem. Int. Ed. Engl. 34, 893–895.

    Article  Google Scholar 

  6. Herrmann, G. F., Ichikawa, Y., Wandrey, C., Gaeta, F. C. A., Paulson, J. C., and Wong, C.-H. (1993) A new multi-enzyme system for one-pot synthesis of sialyl oligosaccharides: Combined use of-galactosidase and α(2,6)-sialyltransferase coupled with regeneration in situ of CMP-sialic acid. Tetrahedron Lett. 34, 3091–3094.

    Article  CAS  Google Scholar 

  7. Springer, G. F. (1984) T and Tn, general carcinoma autoantigens. Science 224, 1198–1206.

    Article  PubMed  CAS  Google Scholar 

  8. Prokop, O. and Uhlenbruck, G. (1969) The Thomsen Phenomenon in Human Blood and Serum Groups. MacLaren ⇐p; Sons, London, pp. 102–110.

    Google Scholar 

  9. Uhlenbruck, G., Pardoe, G. I., and Bird, G. W. G. (1969) On the specifity of lectins with a broad agglutination spectrum II. Studies on the nature of the T-antigen and the specific receptors for the lectin of Arachis hypogoea (ground-nut). Z. Immunitätsforsch. Allg. Klin. Immunol. 138, 423–433.

    CAS  Google Scholar 

  10. Livingston, P. O. (1992) Construction of cancer vaccines with carbohydrate and protein (peptide) tumor antigens. Curr. Opinion Immunol. 4, 624–629.

    Article  CAS  Google Scholar 

  11. Cohen, J. (1993) Cancer vaccines get a shot in the arm. Science 262, 841–843.

    Article  PubMed  CAS  Google Scholar 

  12. Lubineau, A., Augé, C., and Francois, P. (1992) The use of porcine liver (2→3)-α-sialyltransferase in the large scale synthesis of α-NeupAc-(2→3)-β-D-Galp-(1→3)-D-GlcpNAc, the epitope of the tumor-associated carbohydrate antigen CA 50. Carbohydr. Res. 228, 137–144.

    Article  PubMed  CAS  Google Scholar 

  13. Sabesan, S. and Paulson, J. C. (1986) Combined chemical and enzymatic synthesis of sialyloligosaccharides and characterization by 500-MHz 1H and 13C NMR spectroscopy. J. Am. Chem. Soc. 108, 2068–2080.

    Article  CAS  Google Scholar 

  14. Ito, Y., Gaudino, J. J., and Paulson, J. C. (1993) Synthesis of bioactive sialosides. Pure Appl. Chem. 65, 753–762.

    Article  CAS  Google Scholar 

  15. Lubineau, A. and Bienaymé, H. (1991) Synthesis of 2-acetamido-2-deoxy-3-ortho-β-D-galactopyranose from 2-acetamido-2-deoxy-D-glucose through a trifluoromethylsulfonyl group displacement. Carbohydr. Res. 212, 267–271.

    Article  PubMed  CAS  Google Scholar 

  16. Hedbys, L., Johansson, E., Mosbach, K., and Larsson, P.-O. (1989) Synthesis of 2-acetamido-2-deoxy-3-O-β-D-galactopyranose by the sequential use of β-D-galactosidase from bovine testes and Escherichia coli. Carbohydr. Res. 186, 217–223.

    Article  PubMed  CAS  Google Scholar 

  17. Schauer, R. Wember, M., and Ferreira do Amaral, C. (1972) Synthesis of CMP-glycosides of radioactive N-acetyl, N-glycolyl-, N-acetyl-7-O-acetyl-and N-acetyl-8-O-acetylneuraminic acids by CMP-sialate synthase from bovine submaxillary glands. Hoppe-Seyler’s Z. Physiol. Chem. 353, 883–886.

    Article  PubMed  CAS  Google Scholar 

  18. Augé, C., Fernandez-Fernandez, R., and Gautheron, C. (1990) The use of immobilized glycosyltransferase in the synthesis of sialyloligosaccharides. Carbohydr. Res. 200, 257–268.

    Article  PubMed  Google Scholar 

  19. Distler, J. J. and Jourdian, G. W. (1973) The purification and properties of β-galactosidase from bovine testes. J. Biol. Chem. 248, 6772–6780.

    PubMed  CAS  Google Scholar 

  20. Kren, V. (1992) Fructosylation of ergot alkaloids by yeast invertase. Biotechnol. Lett. 14, 769–772.

    Article  CAS  Google Scholar 

  21. David, S., Augé, C., and Gautheron, C. (1991) Enzymic methods in preparative carbohydrate chemistry. Adv. Carbohydr. Chem. Biochem. 49, 175–237.

    Article  PubMed  CAS  Google Scholar 

  22. Higa, H. H. and Paulson, J. C. (1985) Sialylation of glycoprotein oligosaccharides with N-acetyl, N-glycolyl and N-O-diacetylneuraminic acids. J. Biol. Chem. 260, 8838–8849.

    PubMed  CAS  Google Scholar 

  23. Kean, E. L. and Roseman, S. (1966) CMP-Sialic acid synthetase (cytidine-5′-monophospho-sialic acid synhetase). Methods Enzymol. 8, 208–215.

    Article  CAS  Google Scholar 

  24. Kean, E. L. (1972) CMP-Sialic acid synthetase of nuclei. Methods Enzymol. 28, 413–421.

    Article  Google Scholar 

  25. Warren, L. (1959) The biosynthesis of cytidine 5′-monophospho-N-acetylneuraminic acid by an enzyme from Neisseria meningitis. J. Biol. Chem. 234, 1971–1975.

    PubMed  CAS  Google Scholar 

  26. Křen, V. and Thiem, J. (1997) A simple and non-radioactive method for determination of sialyltransferase activity. Biotechnol. Techniques 11, 323–326.

    Article  Google Scholar 

  27. Gillespie, W., Kelm, S., and Paulson, J. C. (1992) Cloning and expression of the Galβ1,3GalNAc α2,3-sialyltransferase. J. Biol. Chem. 267, 21,004–21,010.

    PubMed  CAS  Google Scholar 

  28. Sticher, U., Groβ, H. J., and Brossmer, R. (1988) Purification of α2,6-sialyltransferase from rat liver by dye chromatography. Biochem. J. 253, 577–580.

    PubMed  CAS  Google Scholar 

  29. Sato, T., Omichi, K., and Ikenaka, T. (1988) Simple assay for sialyltransferase activity with a new fluorogenic substrate. J. Biochem. (Tokyo) 104, 18–21.

    CAS  Google Scholar 

  30. Harada, H., Ueno, Y., Kamei, M., Ohura, R., Tanabe, N., Uchida, Y., et al. (1989) Rapid assay of β-galactosidase and sialyltransferase by lectin affinity high performance liquid chromatography with fluorescence detection. Biomed. Chromatogr. 1989, 110–113.

    Article  Google Scholar 

  31. Groß, H. J., Sticher, U., and Brossmer, R. (1990) A highly sensitive fluorometric assay for sialyltransferase activity using CMP-9-fluoresceinyl-NeuAc as donor. Anal. Biochem. 186, 127–134.

    Article  PubMed  Google Scholar 

  32. Groß, H. J. and Brossmer, R. (1991) Characterization of human plasma sialyltransferase using novel fluorometric assay. Clin. Chim. Acta. 197, 237–247.

    Article  PubMed  Google Scholar 

  33. Mattox, S., Walrath, K., Debbie, C., Smith, D. F., and Cummings, R. D. (1992) A solid-phase assay for the activity of CMPNeuAc:Galβ1-4GlcNAc-R α-2, 6-sialyltransferase. Anal. Biochem. 206, 430–436.

    Article  PubMed  CAS  Google Scholar 

  34. Nakamura, M., Tsunoda, A., and Saito, M. (1991) Radioimmune assay of sialyltransferase and N-acetylgalactosaminyltransferase activities using specific antibodies on a 96-well filtration plate of a multiscreen assay system. Anal. Biochem. 198, 154–159.

    Article  PubMed  CAS  Google Scholar 

  35. Spiegel, L. B., Hadjimichael, J., and Rossomando, E. F. (1992) Assay of sialyltransferase activity by reversed-phase ion-pair high-performance liquid chromatography. J. Chromatogr. 573, 23–27.

    Article  PubMed  CAS  Google Scholar 

  36. Warren, L. (1956) The thiobarbituric acid assay for sialic acid. J. Biol. Chem. 234, 1971–1975.

    Google Scholar 

  37. Gosselin, S., Alhussaini, M., Streiff, M. B., Takabayashi, K., and Palcic, M. M. (1994) A continuous spectrophotometric assay for glycosyltransferases. Anal. Biochem. 220, 92–97.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Křen, V. (1999). One-Pot Enzymatic Synthesis of Sialyl T-Epitope. In: Bucke, C. (eds) Carbohydrate Biotechnology Protocols. Methods in Biotechnology™, vol 10. Humana Press. https://doi.org/10.1007/978-1-59259-261-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-261-6_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-563-8

  • Online ISBN: 978-1-59259-261-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics