Isolation of Marine Natural Products

  • Amy E. Wright
Part of the Methods in Biotechnology book series (MIBT, volume 4)


The world’s oceans cover more than 70% of the earth’s surface and contain over 200,000 invertebrate and algal species (1). These organisms live in complex communities and in close association with other organisms both macro- (e.g., algae, sponges, ascidians) and micro- (e.g., nonfilamentous bacteria, fungi, actinomycetes). Some organisms derive their chemistry from dietary sources, while others synthesize the compounds de novo. Some compounds may be produced by associated microorganisms, while others may require an association between the host and microorganism to produce the compounds. The chemistry of any particular specimen can be affected by the habitat as well as by geographic and seasonal factors (2). In fact, the true biogenetic origin of most marine natural products remains a topic for debate within the marine natural products community.


Marine Organism Brittle Star Sponge Cell Marine Natural Product Ethyl Acetate Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    McConnell, O. J., Longley, R. E., and Koehn, F. E. (1990) The discovery of marine natural products with therapeutic potential, in The Discovery of Natural Products with Therapeutic Potential (Gullo, V. P. ed), Butterworth-Heineman, Boston, MA, pp. 109–174.Google Scholar
  2. 2.
    Paul, V. J. (1992) Ecological Roles of Marine Natural Products. Comstock Pub. Assoc, Ithaca, NY.Google Scholar
  3. 3.
    Faulkner, D. J. (1984) Marine natural products: metabolites of marine algae and herbivorous marine molluscs, Nat. Prod. Rep. 1, 251–280.CrossRefGoogle Scholar
  4. 4.
    Faulkner, D. J. (1984) Marine natural products: metabolites of marine marine invertebrates. Nat. Prod. Rep. 1, 551–598.CrossRefGoogle Scholar
  5. 5.
    Faulkner, D. J. (1986) Marine natural products, Nat. Prod. Rep. 3, 1–33.CrossRefGoogle Scholar
  6. 6.
    Faulkner, D. J. (1987) Marine natural products, Nat. Prod. Rep. 4, 539–576.CrossRefGoogle Scholar
  7. 7.
    Faulkner, D. J. (1990) Marine natural products, Nat. Prod. Rep. 7, 269–309.CrossRefGoogle Scholar
  8. 8.
    Faulkner, D. J. (1991) Marine natural products, Nat. Prod. Rep. 8, 97–147.CrossRefGoogle Scholar
  9. 9.
    Faulkner, D. J. (1992) Marine natural products, Nat. Prod. Rep. 9, 323–364.CrossRefGoogle Scholar
  10. 10.
    Faulkner, D. J. (1993) Marine natural products chemistry. Chem. Rev. 93, 1671–1944.Google Scholar
  11. 11.
    Bartik, K., Braekman, J.-C., Daloze, D., Stoller, C., Huysecom, J., Vandevyer, G., and Ottinger, R. (1987) Topsentins, new toxic bis-indole alkaloids from the marine sponge Topsentia genitrix. Can. J. Chem. 65, 2118–2121.CrossRefGoogle Scholar
  12. 12.
    Tsujii, S., Rinehart, K. L., Gunasekera, S., Kashman, Y., Cross, S., Lui, M., Pomponi, S., and Diaz, M. C. (1988) Topsentin, bromotopsentin, dihydro-deoxybromotopsentin: antiviral and antitumor bis(indolyl)imidazoles from Caribbean deep-sea sponges of the family Halichondriidae. Structural and synthetic studies. J. Org. Chem. 53, 5446–5453.CrossRefGoogle Scholar
  13. 13.
    Wright, A. E., Pomponi, S. A., Cross, S. S., and McCarthy, P. M. (1992) A new bis(indole) alkaloid from a deep water marine sponge of the genus Spongosorites. J. Org. Chem. 57, 4772–4775.CrossRefGoogle Scholar
  14. 14.
    Moore R. E., Helfrich, P., and Patterson, G. M. L. (1982) The deadly seaweed of Hana. Oceanus 25, 54–63.Google Scholar
  15. 15.
    Perry, N. B., Blunt, J. W., Munro, M. H. G., and Pannell, L. K. (1988) Mycalamide a, an antiviral compound from a New Zealand sponge of the genus Mycale. J. Am. Chem. Soc. 110, 4850–4851.CrossRefGoogle Scholar
  16. 16.
    Moore, R. E., Blackman, A. J., Cheuk, C. E., Mynderse, J. S., Matsumoto, G. K., Clardy, J., Woodward, R. W., and Craig J. C. (1984) Absolute stereochemistries of the aplysiatoxins and oscillatoxin a. J. Org. Chem. 49, 2484–2489.CrossRefGoogle Scholar
  17. 17.
    Davis, A. R. and Wright, A. E. (1990) Inhibition of larval settlement by natural products from the ascidian Eudistoma olivaceum (van Name). J. Chem. Ecol. 16, 1349–1357.CrossRefGoogle Scholar
  18. 18.
    Davis, A. R., Targett, N. M., Mcconnell, O. J., and Young, C. M. (1989) Epibiosis of marine algae and benthic invertebrates: natural products chemistry and other mechanisms inhibiting settlement and overgrowth. Bio-org. Marine Chem. 3, 85–114.Google Scholar
  19. 19.
    Pawlik, J. R. (1993) Marine invertebrate chemical defenses. Chem. Rev. 93, 1911–1922.CrossRefGoogle Scholar
  20. 20.
    Sullivan, B. W., Faulkner, D. J., Matsumoto, G. K., Cun-hens H., and Clardy, J. (1986) Metabolites of the burrowing sponge Siphonodictyon coralliphagum. J. Org. Chem. 51, 4568–4573.CrossRefGoogle Scholar
  21. 21.
    Sullivan, B. J., Faulkner, D. J., and Webb, L. (1983) Siphonodictidine, a metabolite of the burrowing sponge Siphonodictyon sp. that inhibits coral growth. Science 211, 1175, 1176.CrossRefGoogle Scholar
  22. 22.
    Baker, J. T., Borris, R. P., Carté, B., Cordell, G. A., Soejarto, D. D., Cragg, G. M., Gupta, M. P., Iwu, M. M., Mdulid, D. R., and Tyler, V. E. (1995) Natural product drug discovery and development: new perspectives on international collaboration. J. Nat. Prod. 58, 1325–1357.CrossRefGoogle Scholar
  23. 23.
    Rodriguez, J., Nieto, R. M., and Crews, P. (1993) New structures and bioactivity patterns of bengazole alkaloids from a Choristid sponge. J. Nat. Prod. 56, 2034–2040.CrossRefGoogle Scholar
  24. 24.
    Hallock, Y. F., Cardellina, J. H., Balaschak, M. S., Alexander, M. R., Prather, T. R., Shoemaker, R H., and Boyd, M. R (1995) Antitumor activity and stereochemistry of acetylenic alcohols from the sponge Cribrochalina vasculum. J. Nat. Prod. 58, 1801–1807.CrossRefGoogle Scholar
  25. 25.
    Wright, A. E., Chiles, S. A., and Cross, S. S. (1991) 3-amino-l-(2-aminoimidazolyl)-prop-1-ene from the marine sponges Teichaxinella morchella and Ptilocaulis walpersi. J. Nat. Prod. 54, 1684–1686.CrossRefGoogle Scholar
  26. 26.
    Wright, A., Forleo, D., Gunawardana, G., Gunasekera, S., Koehn F., and McConnell, O. J. (1990) Antitumor tetrahydroisoquinoline alkaloids from the colonial ascidian Ecteinascidia turbinate. J. Org. Chem. 55, 4508–4512.CrossRefGoogle Scholar
  27. 27.
    Hamburger M. O. and Cordell, G. A. (1987) A direct bioautographic TLC assay for compounds possessing antibacterial activity. J. Nat. Prod. 50, 19–22.CrossRefGoogle Scholar
  28. 28.
    Burres, N. S., Hunter, J. E., and Wright, A. E. (1989) A mammalian cell agar-diffusion assay for the detection of toxic compounds. J. Nat. Prod. 52, 522–527.CrossRefGoogle Scholar
  29. 29.
    Brennan, M. R. and Erickson, K. L. (1982) Austradiol acetate and austradiol diacetate, 4,6-dihydroxy-(+)-selinane derivatives from an Australian Laurencia sp. J. Org. Chem. 47, 3917–3921.CrossRefGoogle Scholar
  30. 30.
    Blunt, J. W., Calder, V. L., Fenwick, G. D., Lake, R. J., McCombs, J. D., Munro M. H. G., and Perry, N. (1987) Reverse phase flash chromatography: a method for the rapid partitioning of natural product extracts. J. Nat. Prod. 50, 290–292.CrossRefGoogle Scholar
  31. 31.
    Evans, M. B., Dale, A. D., and Little, C. J. (1980) The preparation and evaluation of superior bonded phases reversed-phase, high performance liquid chromatography. Chromatographia 13, 5–10.CrossRefGoogle Scholar
  32. 32.
    Shimuzu, Y. (1985) Bioactive marine natural products with emphasis on handling of water-soluble compounds. J. Nat. Prod. 48, 223–235.CrossRefGoogle Scholar
  33. 33.
    Schmitz, F. J., Hollenbeak, K. H., and Campbell, D. C. (1978) Marine natural products: halitoxin, toxic complex of several marine sponges of the genus Haliclona. J. Org. Chem. 43, 3916–3922.CrossRefGoogle Scholar
  34. 34.
    Fusetani, N., Matsunaga, S., and Konosu, S. (1981) Bioactive marine metabolites ii. halistanol sulfate, an antimicrobial novel steroid from the marine sponge Halichondria cf. moorei Berquist. Tetrahed. Lett. 21, 1985–1988.CrossRefGoogle Scholar
  35. 35.
    McKee, T., Cardellina, J. H., Tischler, M., Snader, K. M., Boyd, M. R. (1993) Ibisterol sulfate, a novel HIV-inhibitory sulfated sterol from the deep water sponge Topsentia sp. J. Nat. Prod. 34, 389–392.Google Scholar
  36. 36.
    Cardellina, J. H., Munro, M. H. G., Fuller, R. W., Manfredi, K. P., McKee, T. C., Tischler, M., Bokesh, H. R., Gustafson, K. R., Beutler, J. A., and Boyd, M. R. (1993) A chemical screening strategy for the dereplication and prioritization of HIV-inhibitory aqueous natural products extracts. J. Nat. Prod. 56, 1123–1129.CrossRefGoogle Scholar
  37. 37.
    Gulavita, N. K., Wright, A. E., McCarthy, P. J., Pomponi, S. A., Kelly-Borges, M., Chin, M., and Sills, M. A. (1993) Isolation and structure elucidation of 34-sulfatobastadin 13, an inhibitor of the endothelin A receptor, from a marine sponge of the genus Ianthella. J. Nat. Prod. 56, 1613–1617.CrossRefGoogle Scholar
  38. 38.
    Gulavita, N. K., Pomponi, S. A., Wright, A. E., Garay, M., and Sills, M. A. (1995) Aplysillin A, a thrombin receptor antagonist from the marine sponge Aplysina fistularis fulva. J. Nat. Prod. 58, 954–957.CrossRefGoogle Scholar
  39. 39.
    Killday, K. B., Wright, A. E., Jackson, R. H., and Sills, M. A. (1995) Bis-(sulfato)-cyclosiphonodictyol A, a new disulfated sesquiterpene-hydroquinone from a deep water collection of the marine sponge Siphonodictyon coralliphagum. J. Nat. Prod. 58, 958–960.CrossRefGoogle Scholar
  40. 40.
    Bruno, I., Minale, L., Riccio, R., Cariello, L., Higa, T., and Tanaka, J. (1993) Starfish saponins, Part 50. Steroidal Glycosides from the Okinawan starfish Nardoa tuberculata. J. Nat. Prod. 56, 1057–1064.CrossRefGoogle Scholar
  41. 41.
    Kashman, Y., Hirsh, S., McConnell, O., Ohtani, I., Kusumi, T., and Kakisawa, H., (1989) Ptilomycalin A: a novel polycyclic alkaloid of marine origin. J. Am. Chem. Soc. 111, 8925, 8926.CrossRefGoogle Scholar
  42. 42.
    Jares-Erijman, E. A., Sakai, R., and Rinehart, K. L. (1991) Crambescidins: New antiviral and cytotoxic compounds from the sponge Crambe crambe. J. Org. Chem. 56, 5712–5715.CrossRefGoogle Scholar
  43. 43.
    Berlinck, R. G. S., Braekman, J. C., Daloze, D., Bruno, I., Riccio, R., Ferri, S., Spampinato, S., and Speroni, E. (1993) Polycyclic guanidine alkaloids from the marine sponge Crambe crambe and Ca+2 channel blocker activity of crambescidin 816. J. Nat. Prod. 56, 1007–1015.CrossRefGoogle Scholar
  44. 44.
    Jares-Erijman, E. A., Ingrum, A. A., Sun, F., and Rinehart, K. L. (1993) On the structures of crambescins B and Cl. J. Nat. Prod. 56, 2186–2188.CrossRefGoogle Scholar
  45. 45.
    Patil, D. A., Vasant Kumar, N. V., Kokke, W. C., Bean, M. F., Freyer, A. J., De Brosse, C., Mai., S., Truneh, A., Faulkner, D. J., Carté, B., Breen, A. L., Hertzberg, R. P., Johnson, R. K., Westley, J. W., and Potts, B. C. M. (1995) Novel alkaloids from the sponge Batzella sp.: inhibitors of HIV gp-120 human cd4 binding. J. Org. Chem. 60, 1182–1188.CrossRefGoogle Scholar
  46. 46.
    Tavares, R., Daloze, D., Braekman, J. C., Hajdu, E., and van Soest, R. W. M. (1995) 8b-Hydroxyptilocaulin, a new guanidine alkaloid from the marine sponge Monanchora arbuscula. J. Nat. Prod. 58, 1139–1142.CrossRefGoogle Scholar
  47. 47.
    Palagiano, E., de Marino, S., Minale, L., Riccio, R., Zollo, F., Iorizzi, M., Carre, J. B., Debitus, C., Lucarain, L., and Provost, J. (1995) Ptilomycalin A, crembescidin 800 and related highly cytotoxic guanidine alkaloids from the starfishes Fromia monilis and Celerina heffernani. Tetradedron 51, 3675–3682.CrossRefGoogle Scholar
  48. 48.
    Gunawardana, G. P., Koehn. F. E., Lee, A. Y., Clardy, J., He, H., and Faulkner, D. J. (1992) Pyridoacridine alkaloids from deep-water marine sponges of the family Pachastrellidae: structure revision of dercitin and related compounds and correlation with the kuanoniamines. J. Org. Chem. 57, 1523–1526.CrossRefGoogle Scholar
  49. 49.
    Caroll, A. R. and Scheuer, P. J. (1990) Kuanoniamines A, B, C, and D: pentacyclic alkaloids from a tunicate and its prosobranch mollusk predator Chelynotus semperi. J. Org. Chem. 55, 4426–4431.CrossRefGoogle Scholar
  50. 50.
    Rudi, A. and Kashman, Y. (1989) Six new alkaloids from the purple red sea tunicate Eudistoma sp. J. Org. Chem. 54, 5331–5337.CrossRefGoogle Scholar
  51. 51.
    Gunawardana, G. P., Kohnmoto, S., and Burres, N. S. (1989) New cytotoxic alkaloids from two deep water marine sponges of the family Pachastrellida. Tetrahed. Lett. 30, 4359–4362.CrossRefGoogle Scholar
  52. 52.
    Pettit, G. R., Cichacz, Z., Gao, F., Herald, C. L., Boyd, M. R., Schmidt, J. M., and Hooper, J. N. A. (1993) Isolation and structure of spongistatin 1. J. Org. Chem. 58, 1302–1304.CrossRefGoogle Scholar
  53. 53.
    Pettit, G. R., Cichacz, Z., Gao, F., Herald, C. L., Boyd, M. R., Schmidt, J. M., Hamel E., and Bai, R., (1994) Antineoplastic agents 300. Isolation and structure of the rare human cancer inhibitory macrocyclic lactones spongistatins 8 and 9. J. Chem. Soc. Chem. Commun. 1605, 1606.Google Scholar
  54. 54.
    Kobayashi, M., Aoki, S., Sakai, H., Kawazoe, K., Kihara, N., Sasaki, T., and Kitagawa, I. (1993) Altohytrin A, a potent antitumor macrolide from the Okinawan marine sponge Hyrtios altum. Tetrahed. Lett. 34, 2795–2798.CrossRefGoogle Scholar
  55. 55.
    Fusetani, N., Shinoda, K., and Matsunaga, S. (1993) Cinachyrolide A: a potent cytotoxic macrolide possessing two spiro ketals from marine sponge Cinachyra sp. J. Am. Chem. Soc. 115, 3977–3981.CrossRefGoogle Scholar
  56. 56.
    Kobayashi, J. and Ishibashi, M. (1993) Bioactive metabolites of symbiotic marine micro-organisms. Chem. Rev. 93, 1753–1769.CrossRefGoogle Scholar
  57. 57.
    Arai, T., Katsuhiro T., Ishiguro K., and Yazawa, K. (1980) Increased production of saframycin A and isolation of saframycin S. J. Antibiot. 33, 951–959.Google Scholar
  58. 58.
    Fenical, W. and Jensen, P. R. (1993) Marine microorganisms: A new biomedical resource, in Marine Biotechnology, vol. 1: Pharmaceutical and Bioactive Natural Products (Attaway, D. H. and Zaborsky, O. R., eds.), Plenum, New York.Google Scholar
  59. 59.
    Fenical W. (1993) Chemical studies of marine bacteria: developing a new resource. Chem. Rev. 93, 1673–1683.CrossRefGoogle Scholar
  60. 60.
    Thompson, J. E., Barrow, K. D., and Faulkner, D. J. (1983) Localization of two brominated metabolites, aerothionin and homoaerothionin in spherulous cell of the marine sponge Aplysina fistularis (=-verongia thiona). Ada Zoologica 64, 199–210.CrossRefGoogle Scholar
  61. 61.
    Muller, W. E., Diehl-Seifert, B., Sobel, C., Bechtold, A., Kljajicand Z., and Dorn, A. (1986) Sponge secondary metabolites: biochemical and ultrastructural localization of the antimitotic agent avarol in Dysidea avara. J. Histochem. Cytochem. 34, 1687–1690.Google Scholar
  62. 62.
    Uriz, M. J., Turon, X., Gordi, J., and Tur, J. M. (1996) New light on the cell location of avarol within the sponge Dysidea avara (Dendroceratida). Cell Tissue Res. 285, 519–527.CrossRefGoogle Scholar
  63. 63.
    Uriz, M. J., Becerro, M. A., Tur, J. N. M., and Turon, X. (1996) Location of toxicity with the Mediterranean sponge Crambe crambe (Demospongiae: Poecilosclerida) Marine Biol. 124, 583–590.CrossRefGoogle Scholar
  64. 64.
    Bewley, C. A., Holland, N. D., and Faulkner, D. J. (1996) Two classses of metabolites from Theonella swinhoei are localized in distinct populations of bacterial symbionts. Experientia 52, 716–722.CrossRefGoogle Scholar
  65. 65.
    Faulkner, D. J., Unson, M. D., and Bewley, C. A. (1994) The chemistry of some sponges and their symbionts. Pure Appl. Chem. 66, 1983–1990.CrossRefGoogle Scholar
  66. 66.
    Yasumoto, Y. and Murata, M. (1993) Marine toxins. Chem. Rev. 93, 1897–1909.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1998

Authors and Affiliations

  • Amy E. Wright
    • 1
  1. 1.Division of Biomedical Marine ResearchHarbor Branch Oceanographic InstitutionFort Pierce

Personalised recommendations