Skip to main content

Transportomics for the Characterization of Plant Apocarotenoid Transmembrane Transporters

  • Protocol
  • First Online:
Plant and Food Carotenoids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2083))

Abstract

Apocarotenoids are carotenoid derivatives produced by the nonenzymatic or enzymatic cleavage of carotenoids, followed by different enzymatic modifications. In plants, apocarotenoids play different roles, such as attraction of pollinators and seeds dispersal, defense against pathogens and herbivores, protection against photo-oxidative stresses, stimulation and inhibition of plant growth and regulation of biological processes in the case of phytohormones abscisic acid and strigolactones. While carotenoids are in general plastid-localized metabolites, apocarotenoids can reach different final destinations inside or outside the cell. The mechanisms of apocarotenoid transport through biological membranes have been poorly studied. This chapter describes a method to characterize transmembrane transporters involved in the transport of polar and amphipathic apocarotenoids. This protocol was successfully used to in vitro characterize the transport activity of ATP-binding cassette (ABC) and multidrug and toxic extrusion (MATE) in microsomes isolated from Saccharomyces cerevisiae expressing these plant transporters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Havaux M (2014) Carotenoid oxidation products as stress signals in plants. Plant J 79(4):597–606. https://doi.org/10.1111/tpj.12386

    Article  CAS  PubMed  Google Scholar 

  2. McQuinn RP, Giovannoni JJ, Pogson BJ (2015) More than meets the eye: from carotenoid biosynthesis, to new insights into apocarotenoid signaling. Curr Opin Plant Biol 27:172–179. https://doi.org/10.1016/j.pbi.2015.06.020

    Article  CAS  PubMed  Google Scholar 

  3. Hou X, Rivers J, Leon P, McQuinn RP, Pogson BJ (2016) Synthesis and function of Apocarotenoid signals in plants. Trends Plant Sci 21(9):792–803. https://doi.org/10.1016/j.tplants.2016.06.001

    Article  CAS  PubMed  Google Scholar 

  4. Harrison EH, Quadro L (2018) Apocarotenoids: emerging roles in mammals. Annu Rev Nutr 38:153–172. https://doi.org/10.1146/annurev-nutr-082117-051841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kang J, Park J, Choi H, Burla B, Kretzschmar T, Lee Y, Martinoia E (2011) Plant ABC transporters. The Arabidopsis Book:e0153

    Article  PubMed  PubMed Central  Google Scholar 

  6. Martinoia E, Meyer S, De Angeli A, Nagy R (2012) Vacuolar transporters in their physiological context. Annu Rev Plant Biol 63:183–213. https://doi.org/10.1146/annurev-arplant-042811-105608

    Article  CAS  PubMed  Google Scholar 

  7. Kang J, Hwang JU, Lee M, Kim YY, Assmann SM, Martinoia E, Lee Y (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci U S A 107(5):2355–2360. https://doi.org/10.1073/pnas.0909222107

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kang J, Yim S, Choi H, Kim A, Lee KP, Lopez-Molina L, Martinoia E, Lee Y (2015) Abscisic acid transporters cooperate to control seed germination. Nat Commun 6:8113. https://doi.org/10.1038/ncomms9113

    Article  PubMed  Google Scholar 

  9. Kuromori T, Miyaji T, Yabuuchi H, Shimizu H, Sugimoto E, Kamiya A, Moriyama Y, Shinozaki K (2010) ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc Natl Acad Sci U S A 107(5):2361–2366. https://doi.org/10.1073/pnas.0912516107

    Article  PubMed  PubMed Central  Google Scholar 

  10. Burla B, Pfrunder S, Nagy R, Francisco RM, Lee Y, Martinoia E (2013) Vacuolar transport of abscisic acid glucosyl ester is mediated by ATP-binding cassette and proton-antiport mechanisms in Arabidopsis. Plant Physiol 163(3):1446–1458. https://doi.org/10.1104/pp.113.222547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M, Bachelier JB, Reinhardt D, Bours R, Bouwmeester HJ, Martinoia E (2012) A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483(7389):341–344. https://doi.org/10.1038/nature10873

    Article  CAS  PubMed  Google Scholar 

  12. Tejada-Jimenez M, Galvan A, Fernandez E (2011) Algae and humans share a molybdate transporter. Proc Natl Acad Sci U S A 108(16):6420–6425. https://doi.org/10.1073/pnas.1100700108

    Article  PubMed  PubMed Central  Google Scholar 

  13. Larsen B, Xu D, Halkier BA, Nour-Eldin HH (2017) Advances in methods for identification and characterization of plant transporter function. J Exp Bot 68(15):4045–4056. https://doi.org/10.1093/jxb/erx140

    Article  CAS  PubMed  Google Scholar 

  14. Miller AJ, Zhou JJ (2000) Xenopus oocytes as an expression system for plant transporters. Biochim Biophys Acta 1465(1–2):343–358

    Article  CAS  PubMed  Google Scholar 

  15. Ozvegy C, Litman T, Szakacs G, Nagy Z, Bates S, Varadi A, Sarkadi B (2001) Functional characterization of the human multidrug transporter, ABCG2, expressed in insect cells. Biochem Biophys Res Commun 285(1):111–117. https://doi.org/10.1006/bbrc.2001.5130

    Article  CAS  PubMed  Google Scholar 

  16. Shoji T (2014) ATP-binding cassette and multidrug and toxic compound extrusion transporters in plants: a common theme among diverse detoxification mechanisms. Int Rev Cell Mol Biol 309:303–346. https://doi.org/10.1016/b978-0-12-800255-1.00006-5

    Article  CAS  PubMed  Google Scholar 

  17. Remy E, Duque P (2014) Beyond cellular detoxification: a plethora of physiological roles for MDR transporter homologs in plants. Front Physiol 5:201. https://doi.org/10.3389/fphys.2014.00201

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yazaki K (2006) ABC transporters involved in the transport of plant secondary metabolites. FEBS Lett 580(4):1183–1191. https://doi.org/10.1016/j.febslet.2005.12.009

    Article  CAS  PubMed  Google Scholar 

  19. Krumpochova P, Sapthu S, Brouwers JF, de Haas M, de Vos R, Borst P, van de Wetering K (2012) Transportomics: screening for substrates of ABC transporters in body fluids using vesicular transport assays. FASEB J 26(2):738–747. https://doi.org/10.1096/fj.11-195743

    Article  CAS  PubMed  Google Scholar 

  20. Tommasini R, Evers R, Vogt E, Mornet C, Zaman GJ, Schinkel AH, Borst P, Martinoia E (1996) The human multidrug resistance-associated protein functionally complements the yeast cadmium resistance factor 1. Proc Natl Acad Sci U S A 93(13):6743–6748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  22. Paumi CM, Chuk M, Snider J, Stagljar I, Michaelis S (2009) ABC transporters in Saccharomyces cerevisiae and their interactors: new technology advances the biology of the ABCC (MRP) subfamily. Microbiol Mol Biol Rev 73(4):577–593. https://doi.org/10.1128/mmbr.00020-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gomez C, Terrier N, Torregrosa L, Vialet S, Fournier-Level A, Verries C, Souquet JM, Mazauric JP, Klein M, Cheynier V, Ageorges A (2009) Grapevine MATE-type proteins act as vacuolar H+-dependent acylated anthocyanin transporters. Plant Physiol 150(1):402–415. https://doi.org/10.1104/pp.109.135624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Work in GG’s lab was partially supported by the European Union’s Horizon 2020 programme, project “Newcotiana”, Grant Agreement 760331, and by a grant from the Lazio Region, project “ProBioZaff”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Giuliano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Demurtas, O.C., de Brito Francisco, R., Martinoia, E., Giuliano, G. (2020). Transportomics for the Characterization of Plant Apocarotenoid Transmembrane Transporters. In: Rodríguez-Concepción, M., Welsch, R. (eds) Plant and Food Carotenoids. Methods in Molecular Biology, vol 2083. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9952-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9952-1_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9951-4

  • Online ISBN: 978-1-4939-9952-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics