Skip to main content

Determination of In Vitro and In Vivo Activities of Plant Carotenoid Cleavage Oxygenases

Part of the Methods in Molecular Biology book series (MIMB,volume 2083)

Abstract

Carotenoid cleavage products, apocarotenoids, are biologically active compounds exerting important functions as chromophore, hormones, signaling molecules, volatiles, and pigments. Apocarotenoids are generally synthesized by the carotenoid cleavage dioxygenases (CCDs) that comprise a ubiquitous family of enzymes. The activity of plant CCDs was unraveled more than 20 years ago, with the characterization of the maize VP14, the first identified CCD. The protocol developed to determine the activity of this enzyme in vitro is still being used, with minor modifications. In addition, in vivo procedures have been developed during these years, mainly based on the exploitation of Escherichia coli cells engineered to produce specific carotenoid substrates. Further, technological developments have led to significant improvements, contributing to a more efficient detection of the reaction products. This chapter provides an updated set of detailed protocols suitable for the in vitro and in vivo characterization of the activities of CCDs, starting from well-established methods.

Key words

  • Apocarotenoids
  • Carotenoids
  • CCD
  • Enzymatic activity

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Schwartz SH, Tan BC, Gage DA, Zeevaart JA, McCarty DR (1997) Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276(5320):1872–1874

    CrossRef  CAS  PubMed  Google Scholar 

  2. Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435(7043):824–827.. nature03608. https://doi.org/10.1038/nature03608

    CrossRef  CAS  PubMed  Google Scholar 

  3. Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455(7210):195–200.. nature07272. https://doi.org/10.1038/nature07272

    CrossRef  CAS  PubMed  Google Scholar 

  4. Van Norman JM, Sieburth LE (2007) Dissecting the biosynthetic pathway for the bypass1 root-derived signal. Plant J 49(4):619–628. TPJ2982. https://doi.org/10.1111/j.1365-313X.2006.02982.x

    CrossRef  CAS  PubMed  Google Scholar 

  5. Van Norman JM, Zhang J, Cazzonelli CI, Pogson BJ, Harrison PJ, Bugg TD, Chan KX, Thompson AJ, Benfey PN (2014) Periodic root branching in Arabidopsis requires synthesis of an uncharacterized carotenoid derivative. Proc Natl Acad Sci U S A 111(13):E1300–E1309. https://doi.org/10.1073/pnas.14030161111403016111. [pii]

    CrossRef  PubMed  PubMed Central  Google Scholar 

  6. Avendano-Vazquez AO, Cordoba E, Llamas E, San Roman C, Nisar N, De la Torre S, Ramos-Vega M, Gutierrez-Nava MD, Cazzonelli CI, Pogson BJ, Leon P (2014) An uncharacterized Apocarotenoid-derived signal generated in zeta-carotene Desaturase mutants regulates leaf development and the expression of chloroplast and nuclear genes in Arabidopsis. Plant Cell 26(6):2524–2537.. tpc.114.123349. https://doi.org/10.1105/tpc.114.123349

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  7. Havaux M (2014) Carotenoid oxidation products as stress signals in plants. Plant J 79(4):597–606. https://doi.org/10.1111/tpj.12386

    CrossRef  CAS  PubMed  Google Scholar 

  8. Saeed W, Naseem S, Ali Z (2017) Strigolactones biosynthesis and their role in abiotic stress resilience in plants: a critical review. Front Plant Sci 8:1487. https://doi.org/10.3389/fpls.2017.01487

    CrossRef  PubMed  PubMed Central  Google Scholar 

  9. Macias FA, Lopez A, Varela RM, Torres A, Molinillo JM (2004) Bioactive apocarotenoids annuionones F and G: structural revision of annuionones a, B and E. Phytochemistry 65(22):3057–3063.. S0031-9422(04)00429-7. https://doi.org/10.1016/j.phytochem.2004.08.048

    CrossRef  CAS  PubMed  Google Scholar 

  10. Yoneyama K, Awad AA, Xie X, Takeuchi Y (2010) Strigolactones as germination stimulants for root parasitic plants. Plant Cell Physiol 51(7):1095–1103. https://doi.org/10.1093/pcp/pcq055pcq055. [pii]

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  11. Caceres LA, Lakshminarayan S, Yeung KK, McGarvey BD, Hannoufa A, Sumarah MW, Benitez X, Scott IM (2016) Repellent and attractive effects of alpha-, beta-, and Dihydro-beta- ionone to generalist and specialist herbivores. J Chem Ecol 42(2):107–117. https://doi.org/10.1007/s10886-016-0669-z10.1007/s10886-016-0669-z. [pii]

    CrossRef  CAS  PubMed  Google Scholar 

  12. Wei S, Hannoufa A, Soroka J, Xu N, Li X, Zebarjadi A, Gruber M (2011) Enhanced beta-ionone emission in Arabidopsis over-expressing AtCCD1 reduces feeding damage in vivo by the crucifer flea beetle. Environ Entomol 40(6):1622–1630. https://doi.org/10.1603/EN11088

    CrossRef  CAS  PubMed  Google Scholar 

  13. Park S, Takano Y, Matsuura H, Yoshihara T (2004) Antifungal compounds from the root and root exudate of Zea mays. Biosci Biotechnol Biochem 68(6):1366–1368

    CrossRef  CAS  PubMed  Google Scholar 

  14. Mikhlin ED, Radina VP, Dmitrovskii AA, Blinkova LP, Butova LG (1983) Antifungal and antimicrobial activity of beta-ionone and vitamin a derivatives. Prikl Biokhim Mikrobiol 19(6):795–803

    CAS  PubMed  Google Scholar 

  15. Rodríguez A, Alquézar B, Peña L (2013) Fruit aromas in mature fleshy fruits as signals of readiness for predation and seed dispersal. New Phytol 197(1):36–48. https://doi.org/10.1111/j.1469-8137.2012.04382.x

    CrossRef  CAS  PubMed  Google Scholar 

  16. Rivera-Madrid R, Aguilar-Espinosa M, Cárdenas-Conejo Y, Garza-Caligaris LE (2016) Carotenoid Derivates in Achiote (Bixa orellana) seeds: synthesis and health promoting properties. Front Plant Sci 7:1406. https://doi.org/10.3389/fpls.2016.01406

    CrossRef  PubMed  PubMed Central  Google Scholar 

  17. Baldermann S, Yamamoto M, Yang Z, Kawahashi T, Kuwano K, Watanabe N (2013) C13-Apocarotenoids: more than Flavor compounds? In: Carotenoid cleavage products, vol 1134. ACS symposium series, vol 1134. American Chemical Society, pp 73–80. doi:https://doi.org/10.1021/bk-2013-1134.ch007

    Google Scholar 

  18. Ahrazem O, Rubio-Moraga A, Nebauer SG, Molina RV, Gomez-Gomez L (2015) Saffron: its Phytochemistry, developmental processes, and biotechnological prospects. J Agric Food Chem 63(40):8751–8764. https://doi.org/10.1021/acs.jafc.5b03194

    CrossRef  CAS  PubMed  Google Scholar 

  19. Harrison PJ, Bugg TD (2014) Enzymology of the carotenoid cleavage dioxygenases: reaction mechanisms, inhibition and biochemical roles. Arch Biochem Biophys 544:105–111. https://doi.org/10.1016/j.abb.2013.10.005S0003-9861(13)00307-X. [pii]

    CrossRef  CAS  PubMed  Google Scholar 

  20. Ahrazem O, Gomez-Gomez L, Rodrigo MJ, Avalos J, Limon MC (2016) Carotenoid cleavage Oxygenases from microbes and photosynthetic organisms: features and functions. Int J Mol Sci 17(11). E1781 [pii]ijms17111781). https://doi.org/10.3390/ijms17111781

    CrossRef  PubMed Central  Google Scholar 

  21. Seo M, Koshiba T (2002) Complex regulation of ABA biosynthesis in plants. Trends Plant Sci 7(1):41–48. [pii]

    CrossRef  CAS  PubMed  Google Scholar 

  22. Bruno M, Beyer P, Al-Babili S (2015) The potato carotenoid cleavage dioxygenase 4 catalyzes a single cleavage of beta-ionone ring-containing carotenes and non-epoxidated xanthophylls. Arch Biochem Biophys 572:126–133. S0003-9861(15)00073-9. https://doi.org/10.1016/j.abb.2015.02.011

    CrossRef  CAS  PubMed  Google Scholar 

  23. Bruno M, Vermathen M, Alder A, Wust F, Schaub P, van der Steen R, Beyer P, Ghisla S, Al-Babili S (2017) Insights into the formation of carlactone from in-depth analysis of the CCD8-catalyzed reactions. FEBS Lett 591(5):792–800. https://doi.org/10.1002/1873-3468.12593

    CrossRef  CAS  PubMed  Google Scholar 

  24. Bruno M, Hofmann M, Vermathen M, Alder A, Beyer P, Al-Babili S (2014) On the substrate- and stereospecificity of the plant carotenoid cleavage dioxygenase 7. FEBS Lett 588(9):1802–1807. https://doi.org/10.1016/j.febslet.2014.03.041S0014-5793(14)00260-9. [pii]

    CrossRef  CAS  PubMed  Google Scholar 

  25. Frusciante S, Diretto G, Bruno M, Ferrante P, Pietrella M, Prado-Cabrero A, Rubio-Moraga A, Beyer P, Gomez-Gomez L, Al-Babili S, Giuliano G (2014) Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis. Proc Natl Acad Sci U S A 111(33):12246–12251. https://doi.org/10.1073/pnas.14046291111404629111. [pii]

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rodrigo MJ, Alquezar B, Alos E, Medina V, Carmona L, Bruno M, Al-Babili S, Zacarias L (2013) A novel carotenoid cleavage activity involved in the biosynthesis of Citrus fruit-specific apocarotenoid pigments. J Exp Bot 64(14):4461–4478. ert260 [pii]. https://doi.org/10.1093/jxb/ert260

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ahrazem O, Diretto G, Argandona J, Rubio-Moraga A, Julve JM, Orzaez D, Granell A, Gomez-Gomez L (2017) Evolutionarily distinct carotenoid cleavage dioxygenases are responsible for crocetin production in Buddleja davidii. J Exp Bot 68(16):4663–4677. https://doi.org/10.1093/jxb/erx2774068697. [pii]

    CrossRef  CAS  PubMed  Google Scholar 

  28. Auldridge ME, McCarty DR, Klee HJ (2006) Plant carotenoid cleavage oxygenases and their apocarotenoid products. Curr Opin Plant Biol 9(3):315–321.. S1369-5266(06)00044-6. https://doi.org/10.1016/j.pbi.2006.03.005

    CrossRef  CAS  PubMed  Google Scholar 

  29. Rodriguez-Concepcion M, Avalos J, Bonet ML, Boronat A, Gomez-Gomez L, Hornero-Mendez D, Limon MC, Melendez-Martinez AJ, Olmedilla-Alonso B, Palou A, Ribot J, Rodrigo MJ, Zacarias L, Zhu C (2018) A global perspective on carotenoids: metabolism, biotechnology, and benefits for nutrition and health. Prog Lipid Res 70:62–93. S0163-7827(17)30039-5. https://doi.org/10.1016/j.plipres.2018.04.004

    CrossRef  CAS  PubMed  Google Scholar 

  30. Auldridge ME, Block A, Vogel JT, Dabney-Smith C, Mila I, Bouzayen M, Magallanes-Lundback M, DellaPenna D, McCarty DR, Klee HJ (2006) Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family. Plant J 45(6):982–993. TPJ2666 [pii]. https://doi.org/10.1111/j.1365-313X.2006.02666.x

    CrossRef  CAS  PubMed  Google Scholar 

  31. Rubio A, Rambla JL, Santaella M, Gomez MD, Orzaez D, Granell A, Gomez-Gomez L (2008) Cytosolic and plastoglobule-targeted carotenoid dioxygenases from Crocus sativus are both involved in beta-ionone release. J Biol Chem 283(36):24816–24825.. M804000200. https://doi.org/10.1074/jbc.M804000200

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang FC, Horvath G, Molnar P, Turcsi E, Deli J, Schrader J, Sandmann G, Schmidt H, Schwab W (2009) Substrate promiscuity of RdCCD1, a carotenoid cleavage oxygenase from Rosa damascena. Phytochemistry 70(4):457–464.. S0031-9422(09)00059-4. https://doi.org/10.1016/j.phytochem.2009.01.020

    CrossRef  CAS  PubMed  Google Scholar 

  33. Simkin AJ, Underwood BA, Auldridge M, Loucas HM, Shibuya K, Schmelz E, Clark DG, Klee HJ (2004) Circadian regulation of the PhCCD1 carotenoid cleavage dioxygenase controls emission of beta-ionone, a fragrance volatile of petunia flowers. Plant Physiol 136(3):3504–3514.. 104.049718. https://doi.org/10.1104/pp.104.049718

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  34. Simkin AJ, Schwartz SH, Auldridge M, Taylor MG, Klee HJ (2004) The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles beta-ionone, pseudoionone, and geranylacetone. Plant J 40(6):882–892. TPJ2263 [pii]. https://doi.org/10.1111/j.1365-313X.2004.02263.x

    CrossRef  CAS  PubMed  Google Scholar 

  35. Ilg A, Bruno M, Beyer P, Al-Babili S (2014) Tomato carotenoid cleavage dioxygenases 1A and 1B: relaxed double bond specificity leads to a plenitude of dialdehydes, mono-apocarotenoids and isoprenoid volatiles. FEBS Open Bio 4:584–593. https://doi.org/10.1016/j.fob.2014.06.005S2211-5463(14)00060-6. [pii]

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ilg A, Beyer P, Al-Babili S (2009) Characterization of the rice carotenoid cleavage dioxygenase 1 reveals a novel route for geranial biosynthesis. FEBS J 276(3):736–747. EJB6820 [pii]. https://doi.org/10.1111/j.1742-4658.2008.06820.x

    CrossRef  CAS  PubMed  Google Scholar 

  37. Ibdah M, Azulay Y, Portnoy V, Wasserman B, Bar E, Meir A, Burger Y, Hirschberg J, Schaffer AA, Katzir N, Tadmor Y, Lewinsohn E (2006) Functional characterization of CmCCD1, a carotenoid cleavage dioxygenase from melon. Phytochemistry 67(15):1579–1589.. S0031-9422(06)00109-9. https://doi.org/10.1016/j.phytochem.2006.02.009

    CrossRef  CAS  PubMed  Google Scholar 

  38. Vogel JT, Tan BC, McCarty DR, Klee HJ (2008) The carotenoid cleavage dioxygenase 1 enzyme has broad substrate specificity, cleaving multiple carotenoids at two different bond positions. J Biol Chem 283(17):11364–11373.. M710106200. https://doi.org/10.1074/jbc.M710106200

    CrossRef  CAS  PubMed  Google Scholar 

  39. Mathieu S, Terrier N, Procureur J, Bigey F, Gunata Z (2005) A carotenoid cleavage dioxygenase from Vitis vinifera L.: functional characterization and expression during grape berry development in relation to C13-norisoprenoid accumulation. J Exp Bot 56(420):2721–2731. eri265 [pii]. https://doi.org/10.1093/jxb/eri265

    CrossRef  CAS  PubMed  Google Scholar 

  40. Lashbrooke JG, Young PR, Dockrall SJ, Vasanth K, Vivier MA (2013) Functional characterisation of three members of the Vitis vinifera L. carotenoid cleavage dioxygenase gene family. BMC Plant Biol 13:156. https://doi.org/10.1186/1471-2229-13-1561471-2229-13-156. [pii]

    CrossRef  PubMed  PubMed Central  Google Scholar 

  41. Ma G, Zhang L, Matsuta A, Matsutani K, Yamawaki K, Yahata M, Wahyudi A, Motohashi R, Kato M (2013) Enzymatic formation of beta-Citraurin from beta-Cryptoxanthin and Zeaxanthin by carotenoid cleavage Dioxygenase4 in the Flavedo of Citrus fruit. Plant Physiol 163(2):682–695. https://doi.org/10.1104/pp.113.223297. pp.113.223297 [pii]

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  42. Huang FC, Molnar P, Schwab W (2009) Cloning and functional characterization of carotenoid cleavage dioxygenase 4 genes. J Exp Bot 60(11):3011–3022.. erp137 [pii]. https://doi.org/10.1093/jxb/erp137

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schwartz SH, Qin X, Zeevaart JA (2001) Characterization of a novel carotenoid cleavage dioxygenase from plants. J Biol Chem 276(27):25208–25211. https://doi.org/10.1074/jbc.M102146200. [pii]

    CrossRef  CAS  PubMed  Google Scholar 

  44. Schwartz SH, Qin X, Loewen MC (2004) The biochemical characterization of two carotenoid cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching. J Biol Chem 279(45):46940–46945. https://doi.org/10.1074/jbc.M409004200. [pii]

    CrossRef  CAS  PubMed  Google Scholar 

  45. Booker J, Auldridge M, Wills S, McCarty D, Klee H, Leyser C (2004) MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr Biol 14:7

    CrossRef  Google Scholar 

  46. Alder A, Holdermann I, Beyer P, Al-Babili S (2008) Carotenoid oxygenases involved in plant branching catalyse a highly specific conserved apocarotenoid cleavage reaction. Biochem J 416(2):289–296.. BJ20080568. https://doi.org/10.1042/BJ20080568

    CrossRef  CAS  PubMed  Google Scholar 

  47. Sergeant MJ, Li JJ, Fox C, Brookbank N, Rea D, Bugg TD, Thompson AJ (2009) Selective inhibition of carotenoid cleavage dioxygenases: phenotypic effects on shoot branching. J Biol Chem 284(8):5257–5264.. M805453200. https://doi.org/10.1074/jbc.M805453200

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  48. Garcia-Limones C, Schnabele K, Blanco-Portales R, Luz Bellido M, Caballero JL, Schwab W, Munoz-Blanco J (2008) Functional characterization of FaCCD1: a carotenoid cleavage dioxygenase from strawberry involved in lutein degradation during fruit ripening. J Agric Food Chem 56(19):9277–9285. https://doi.org/10.1021/jf801096t

    CrossRef  CAS  PubMed  Google Scholar 

  49. Ahrazem O, Rubio-Moraga A, Berman J, Capell T, Christou P, Zhu C, Gomez-Gomez L (2016) The carotenoid cleavage dioxygenase CCD2 catalysing the synthesis of crocetin in spring crocuses and saffron is a plastidial enzyme. New Phytol 209(2):650–663. https://doi.org/10.1111/nph.13609

    CrossRef  CAS  PubMed  Google Scholar 

  50. Sun Z, Hans J, Walter MH, Matusova R, Beekwilder J, Verstappen FW, Ming Z, van Echtelt E, Strack D, Bisseling T, Bouwmeester HJ (2008) Cloning and characterisation of a maize carotenoid cleavage dioxygenase (ZmCCD1) and its involvement in the biosynthesis of apocarotenoids with various roles in mutualistic and parasitic interactions. Planta 228(5):789–801. https://doi.org/10.1007/s00425-008-0781-6

    CrossRef  CAS  PubMed  Google Scholar 

  51. Schmidt H, Kurtzer R, Eisenreich W, Schwab W (2006) The carotenase AtCCD1 from Arabidopsis thaliana is a dioxygenase. J Biol Chem 281(15):9845–9851.. M511668200. https://doi.org/10.1074/jbc.M511668200

    CrossRef  CAS  PubMed  Google Scholar 

  52. Bruno M, Koschmieder J, Wuest F, Schaub P, Fehling-Kaschek M, Timmer J, Beyer P, Al-Babili S (2016) Enzymatic study on AtCCD4 and AtCCD7 and their potential to form acyclic regulatory metabolites. J Exp Bot 67(21):5993–6005.. erw356. https://doi.org/10.1093/jxb/erw356

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gonzales MF, Brooks T, Pukatzki SU, Provenzano D (2013) Rapid protocol for preparation of Electrocompetent Escherichia coli and Vibrio cholerae. J Vis Exp 80:50684. https://doi.org/10.3791/50684

    CrossRef  CAS  Google Scholar 

  54. Froger A, Hall JE (2007) Transformation of plasmid DNA into E. coli using the heat shock method. J Vis Exp 6:253. https://doi.org/10.3791/253

    CrossRef  Google Scholar 

  55. Benov L, Al-Ibraheem J (2002) Disrupting Escherichia coli: a comparison of methods. J Biochem Mol Biol 35(4):428–431

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lourdes Gómez-Gómez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gómez-Gómez, L., Diretto, G., Ahrazem, O., Al-Babili, S. (2020). Determination of In Vitro and In Vivo Activities of Plant Carotenoid Cleavage Oxygenases. In: Rodríguez-Concepción, M., Welsch, R. (eds) Plant and Food Carotenoids. Methods in Molecular Biology, vol 2083. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9952-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9952-1_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9951-4

  • Online ISBN: 978-1-4939-9952-1

  • eBook Packages: Springer Protocols