Skip to main content

A Simple In Vitro Assay to Measure the Activity of Geranylgeranyl Diphosphate Synthase and Other Short-Chain Prenyltransferases

  • Protocol
  • First Online:
Plant and Food Carotenoids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2083))

Abstract

Most carotenoids are C40 metabolites produced from C20 geranylgeranyl diphosphate (GGPP). The enzymes that produce this precursor, GGPP synthases (GGPPS), are members of the short-chain prenyltransferase (SC-PT) family. SC-PTs are enzymes that catalyze the sequential head-to-tail addition of one or more C5 molecules of isopentenyl diphosphate (IPP) to dimethylallyl diphosphate (DMAPP) with the concomitant release of pyrophosphate (PPi). SC-PTs produce linear isoprenyl diphosphates of up to C20 (GGPP) that serve as precursors for many groups of isoprenoids with a wide range of essential biological functions in Eucarya, Bacteria, and Archaea. Enzymatic analysis of SC-PT activity normally requires complex, laborious and expensive methods such as radioactivity-based assays or liquid chromatography–mass spectrometry (LC-MS). Here we describe a fast and inexpensive spectrophotometric protocol for determining the kinetic parameters of SC-PTs in purified enzyme preparations, using an adapted assay for PPi quantification. We developed the method using the Arabidopsis thaliana GGPPS11 enzyme, which produces geranylgeranyl diphosphate for the synthesis of carotenoids in the chloroplast.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rodríguez-Concepción M, Boronat A (2015) Breaking new ground in the regulation of the early steps of plant isoprenoid biosynthesis. Curr Opin Plant Biol 25:17–22. https://doi.org/10.1016/j.pbi.2015.04.001

    Article  CAS  PubMed  Google Scholar 

  2. Liang PH, Ko TP, Wang AHJ (2002) Structure, mechanism and function of prenyltransferases. Eur J Biochem 269:3339–3354. https://doi.org/10.1046/j.1432-1033.2002.03014.x

    Article  CAS  PubMed  Google Scholar 

  3. Vandermoten S, Haubruge É, Cusson M (2009) New insights into short-chain prenyltransferases: structural features, evolutionary history and potential for selective inhibition. Cell Mol Life Sci 66:3685–3695. https://doi.org/10.1007/s00018-009-0100-9

    Article  CAS  PubMed  Google Scholar 

  4. Ambo T, Noike M, Kurokawa H, Koyama T (2008) Cloning and functional analysis of novel short-chain cis-prenyltransferases. Biochem Biophys Res Commun 375:536–540. https://doi.org/10.1016/j.bbrc.2008.08.057

    Article  CAS  PubMed  Google Scholar 

  5. Sallaud C, Rontein D, Onillon S, Jabes F, Duffe P, Giacalone C, Thoraval S, Escoffier C, Herbette G, Leonhardt N, Causse M, Tissier A (2009) A novel pathway for sesquiterpene biosynthesis from Z,Z-farnesyl pyrophosphate in the wild tomato Solanum habrochaites. Plant Cell 21:301–317. https://doi.org/10.1105/tpc.107.057885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schilmiller AL, Schauvinhold I, Larson M, Xu R, Charbonneau AL, Schmidt A, Wilkerson C, Last RL, Pichersky E (2009) Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate. Proc Natl Acad Sci 106:10865–10870. https://doi.org/10.1073/pnas.0904113106

    Article  PubMed  Google Scholar 

  7. Hsieh F-L, Chang T-H, Ko T-P, Wang AH-J (2011) Structure and mechanism of an Arabidopsis medium/long-chain-length prenyl pyrophosphate synthase. Plant Physiol 155:1079–1090. https://doi.org/10.1104/pp.110.168799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Akhtar TA, Matsuba Y, Schauvinhold I, Yu G, Lees HA, Klein SE, Pichersky E (2013) The tomato cis-prenyltransferase gene family. Plant J 73:640–652. https://doi.org/10.1111/tpj.12063

    Article  CAS  PubMed  Google Scholar 

  9. Marrero PF, Poulter CD, Edwards PA (1992) Effects of site-directed mutagenesis of the highly conserved aspartate residues in domain II of farnesyl diphosphate synthase activity. J Biol Chem 267:21873–21878

    CAS  PubMed  Google Scholar 

  10. Joly A, Edwards PA (1993) Effect of site-directed mutagenesis of conserved aspartate and arginine residues upon farnesyl diphosphate synthase activity. J Biol Chem 268:26983–26989

    CAS  PubMed  Google Scholar 

  11. Tarshis LC, Yan M, Poulter CD, Sacchettini JC (1994) Crystal structure of recombinant farnesyl diphosphate synthase at 2.6-ANG. resolution. Biochemistry 33:10871–10877. https://doi.org/10.1021/bi00202a004

    Article  CAS  PubMed  Google Scholar 

  12. Song L, Poulter CD (1994) Yeast farnesyl-diphosphate synthase: site-directed mutagenesis of residues in highly conserved prenyltransferase domains I and II. Proc Natl Acad Sci U S A 91:3044–3048

    Article  CAS  Google Scholar 

  13. Koyama T, Tajima M, Sano H, Doi T, Koike-Takeshita A, Obata S, Nishino T, Ogura K (1996) Identification of significant residues in the substrate binding site of Bacillus stearothermophilus farnesyl diphosphate synthase. Biochemistry 35:9533–9538. https://doi.org/10.1021/bi960137v

    Article  CAS  PubMed  Google Scholar 

  14. Koyama T, Gotoh Y, Nishino T (2000) Intersubunit location of the active site of farnesyl diphosphate synthase: reconstruction of active enzymes by hybrid-type heteromeric dimers of site-directed mutants. Biochemistry 39:463–469

    Article  CAS  Google Scholar 

  15. Aaron JA, Christianson DW (2010) Trinuclear metal clusters in catalysis by terpenoid synthases. Pure Appl Chem 82:1585–1597. https://doi.org/10.1351/PAC-CON-09-09-37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ohnuma S, Hirooka K, Hemmi H, Ishida C, Ohto C, Nishino T (1996) Conversion of product specificity of archaebacterial geranylgeranyl-diphosphate synthase. J Biol Chem 271:18831–18837. https://doi.org/10.1074/jbc.271.31.18831

    Article  CAS  PubMed  Google Scholar 

  17. Ohnuma SI, Narita K, Nakazawa T, Ishida C, Takeuchi Y, Ohto C, Nishino T (1996) A role of the amino acid residue located on the fifth position before the first aspartate-rich motif of farnesyl diphosphate synthase on determination of the final product. J Biol Chem 271:30748–30754

    Article  CAS  Google Scholar 

  18. Tarshis LC, Proteau PJ, Kellogg BA, Sacchettini JC, Poulter CD (1996) Regulation of product chain length by isoprenyl diphosphate synthases. Proc Natl Acad Sci 93:15018–15023. https://doi.org/10.1073/pnas.93.26.15018

    Article  CAS  PubMed  Google Scholar 

  19. Wang K, Ohnuma S (1999) Chain-length determination mechanism of isoprenyl diphosphate synthases and implications for molecular evolution. Trends Biochem Sci 24:445–451

    Article  CAS  Google Scholar 

  20. Stanley Fernandez SM, Kellogg BA, Poulter CD (2000) Farnesyl diphosphate synthase. Altering the catalytic site to select for geranyl diphosphate activity. Biochemistry 39:15316–15321

    Article  CAS  Google Scholar 

  21. Nagel R, Bernholz C, Vranová E, Košuth J, Bergau N, Ludwig S, Wessjohann L, Gershenzon J, Tissier A, Schmidt A (2015) Arabidopsis thaliana isoprenyl diphosphate synthases produce the C 25 intermediate, geranylfarnesyl diphosphate. Plant J 84:847–859. https://doi.org/10.1111/tpj.13064

    Article  CAS  PubMed  Google Scholar 

  22. Wang C, Chen Q, Fan D, Li J, Wang G, Zhang P (2016) Structural analyses of short-chain prenyltransferases identify an evolutionarily conserved GFPPS clade in Brassicaceae plants. Mol Plant 9:195–204. https://doi.org/10.1016/j.molp.2015.10.010

    Article  CAS  PubMed  Google Scholar 

  23. Cunillera N, Arró M, Delourme D, Karst F, Boronat A, Ferrer A (1996) Arabidopsis thaliana contains two differentially expressed farnesyl-diphosphate synthase genes. J Biol Chem 271:7774–7780. https://doi.org/10.1074/jbc.271.13.7774

    Article  CAS  PubMed  Google Scholar 

  24. Masferrer A, Arró M, Manzano D, Schaller H, Fernández-Busquets X, Moncaleán P, Fernández B, Cunillera N, Boronat A, Ferrer A (2002) Overexpression of Arabidopsis thaliana farnesyl diphosphate synthase (FPS1S) in transgenic Arabidopsis induces a cell death/senescence-like response and reduced cytokinin levels. Plant J 30:123–132

    Article  CAS  Google Scholar 

  25. Chang T-H, Hsieh F-L, Ko T-P, Teng K-H, Liang P-H, Wang AH-J (2010) Structure of a heterotetrameric geranyl pyrophosphate synthase from mint (Mentha piperita) reveals Intersubunit regulation. Plant Cell 22:454–467. https://doi.org/10.1105/tpc.109.071738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim OT, Bang KH, Jung SJ, Kim YC, Hyun DY, Kim SH, Cha SW (2010) Molecular characterization of ginseng farnesyl diphosphate synthase gene and its up-regulation by methyl jasmonate. Biol Plant 54:47–53. https://doi.org/10.1007/s10535-010-0007-1

    Article  CAS  Google Scholar 

  27. Schmidt A, Wächtler B, Temp U, Krekling T, Séguin A, Gershenzon J (2010) A bifunctional geranyl and geranylgeranyl diphosphate synthase is involved in terpene oleoresin formation in Picea abies. Plant Physiol 152:639–655. https://doi.org/10.1104/pp.109.144691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Arró M, Manzano D, Ferrer A (2014) Farnesyl diphosphate synthase assay. Methods Mol Biol 1153:41–53. https://doi.org/10.1007/978-1-4939-0606-2_4

    Article  CAS  PubMed  Google Scholar 

  29. Henneman L, van Cruchten AG, Denis SW, Amolins MW, Placzek AT, Gibbs RA, Kulik W, Waterham HR (2008) Detection of nonsterol isoprenoids by HPLC-MS/MS. Anal Biochem 383:18–24. https://doi.org/10.1016/j.ab.2008.08.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nagel R, Gershenzon J, Schmidt A (2012) Nonradioactive assay for detecting isoprenyl diphosphate synthase activity in crude plant extracts using liquid chromatography coupled with tandem mass spectrometry. Anal Biochem 422:433–438. https://doi.org/10.1016/j.ab.2011.12.037

    Article  CAS  Google Scholar 

  31. Ruiz-Sola MÁ, Barja MV, Manzano D, Llorente B, Schipper B, Beekwilder J, Rodriguez-Concepcion M (2016) A single gene encodes two differentially targeted geranylgeranyl diphosphate synthase isoforms. Plant Physiol 172:1393–1402. https://doi.org/10.1104/pp.16.01392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ruiz-Sola MÁ, Coman D, Beck G, Barja MV, Colinas M, Graf A, Welsch R, Rütimann P, Bühlmann P, Bigler L, Gruissem W, Rodríguez-Concepción M, Vranová E (2016) Arabidopsis GERANYLGERANYL DIPHOSPHATE SYNTHASE 11 is a hub isozyme required for the production of most photosynthesis-related isoprenoids. New Phytol 209:252–264. https://doi.org/10.1111/nph.13580

    Article  CAS  PubMed  Google Scholar 

  33. Wang G, Dixon R (2009) A heterodimeric geranyl(geranyl)diphosphate synthase from hop (Humulus lupulus) and the evolution of monoterpene biosynthesis. Proc Natl Acad Sci U S A 106:9914–9919. https://doi.org/10.1073/pnas.0904069106

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Rodríguez-Concepción .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Barja, M.V., Rodríguez-Concepción, M. (2020). A Simple In Vitro Assay to Measure the Activity of Geranylgeranyl Diphosphate Synthase and Other Short-Chain Prenyltransferases. In: Rodríguez-Concepción, M., Welsch, R. (eds) Plant and Food Carotenoids. Methods in Molecular Biology, vol 2083. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9952-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9952-1_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9951-4

  • Online ISBN: 978-1-4939-9952-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics