Skip to main content

A Method for Extraction and LC-MS-Based Identification of Carotenoid-Derived Dialdehydes in Plants

  • Protocol
  • First Online:
Plant and Food Carotenoids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2083))

Abstract

We developed a chemical derivatization based ultra-high performance liquid chromatography-hybrid quadrupole-Orbitrap mass spectrometer (UHPLC-Q-Orbitrap MS) analytical method to identify low-abundant and instable carotenoid-derived dialdehydes (DIALs, diapocarotenoids) from plants. Application of this method enhances the MS response signal of DIALs, enabling the detection of diapocarotenoids, which is crucial for understanding the function of these compounds and for elucidating the carotenoid oxidative metabolic pathway in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cogdell BJ, Gillbro T, Andersson PO, Liu RSH, Asato AE (1994) Carotenoids as accessory light-harvesting pigments. Pure Appl Chem 66:1041–1046

    Article  CAS  Google Scholar 

  2. Horton P, Ruban AV, Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47:655–684

    Article  CAS  PubMed  Google Scholar 

  3. Ruban AV, Pascal AA, Robert B (2000) Xanthophylls of the major photosynthetic light-harvesting complex of plants: identification, conformation and dynamics. FEBS Lett 477:181–185

    Article  CAS  PubMed  Google Scholar 

  4. Polívka T, Sundström V (2004) Ultrafast dynamics of carotenoid excited states−from solution to natural and artificial systems. Chem Rev 104:2021–2072

    Article  CAS  PubMed  Google Scholar 

  5. Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265

    Article  CAS  PubMed  Google Scholar 

  6. Polívka T, Frank HA (2010) Molecular factors controlling photosynthetic light harvesting by carotenoids. Acc Chem Res 43:1125–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mendes-Pinto MM, Galzerano D, Telfer A, Pascal AA, Robert B, Ilioaia C (2013) Mechanisms underlying carotenoid absorption in oxygenic photosynthetic proteins. J Biol Chem 288:18758–18765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Moise AR, Al-Babili S, Wurtzel ET (2014) Mechanistic aspects of carotenoid biosynthesis. Chem Rev 114:164–193

    Article  CAS  PubMed  Google Scholar 

  9. Nisar N, Li L, Lu S, Khin NC, Pogson BJ (2015) Carotenoid metabolism in plants. Mol Plant 8:68–82

    Article  CAS  PubMed  Google Scholar 

  10. Demmig-Adams B, Gilmore AM, Adams WW (1996) Carotenoids 3: in vivo function of carotenoids in higher plants. 3rd. FASEB J 10:403–412

    Article  CAS  PubMed  Google Scholar 

  11. Niyogi KK, Grossman AR, Bjorkman O (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10:1121–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pogson BJ, Niyogi KK, Bjorkman O, DellaPenna D (1998) Altered xanthophyll compositions adversely affect chlorophyll accumulation and nonphotochemical quenching in Arabidopsis mutants. Proc Natl Acad Sci U S A 95:13324–13329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Barber J, Anderson JM, Telfer A (2002) What is β-carotene doing in the photosystem II reaction Centre? Phil Trans R Soc Lond B 357:1431–1440

    Article  Google Scholar 

  14. Jahns P, Holzwarth AR (2012) The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. BBA-Bioenergetics 1817:182–193

    Article  CAS  PubMed  Google Scholar 

  15. Ballottari M, Mozzo M, Girardon J, Hienerwadel R, Bassi R (2013) Chlorophyll triplet quenching and photoprotection in the higher plant monomeric antenna protein Lhcb5. J Phys Chem B 117:11337–11348

    Article  CAS  PubMed  Google Scholar 

  16. Hirschberg J (2001) Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol 4:210–218

    Article  CAS  PubMed  Google Scholar 

  17. Maresca JA, Graham JE, Bryant DA (2008) The biochemical basis for structural diversity in the carotenoids of chlorophototrophic bacteria. Photosynth Res 97:121–140

    Article  CAS  PubMed  Google Scholar 

  18. Parry AD, Horgan R (1991) Carotenoids and abscisic acid (ABA) biosynthesis in higher plants. Physiol Plant 82:320–326

    Article  CAS  Google Scholar 

  19. Schwartz SH, Leon-Kloosterziel KM, Koornneef M, Zeevaart JA (1997) Biochemical characterization of the aba2 and aba3 mutants in Arabidopsis thaliana. Plant Physiol 114:161–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    Article  CAS  PubMed  Google Scholar 

  21. Abuauf H, Haider I, Jia KP, Ablazov A, Mi J, Blilou I, Al-Babili S (2018) The Arabidopsis DWARF27 gene encodes an all-trans−/9-cis-β-carotene isomerase and is induced by auxin, abscisic acid and phosphate deficiency. Plant Sci 277:33–44

    Article  CAS  PubMed  Google Scholar 

  22. Xie X, Yoneyama K, Yoneyama K (2010) The strigolactone story. Annu Rev Phytopathol 48:93–117

    Article  CAS  PubMed  Google Scholar 

  23. Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P et al (2012) The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science 335:1348–1351

    Article  CAS  PubMed  Google Scholar 

  24. Al-Babili S, Bouwmeester HJ (2015) Strigolactones, a novel carotenoid-derived plant hormone. Annu Rev Plant Biol 66:161–186

    Article  CAS  PubMed  Google Scholar 

  25. Jia KP, Baz L, Al-Babili S (2018) From carotenoids to strigolactones. J Exp Bot 69:2189–2204

    Article  CAS  PubMed  Google Scholar 

  26. Moise AR, Von Lintig J, Palczewski K (2005) Related enzymes solve evolutionarily recurrent problems in the metabolism of carotenoids. Trends Plant Sci 10:178–186

    Article  CAS  PubMed  Google Scholar 

  27. Eroglu A, Harrison EH (2013) Carotenoid metabolism in mammals, including man: formation, occurrence, and function of apocarotenoids. J Lipid Res 54:1719–1730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Grune T, Lietz G, Palou A, Ross AC et al (2010) β-Carotene is an important vitamin a source for humans. J Nutr 140:2268S–2285S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Austin DJ, Bu’lock JD, Drake D (1970) The biosynthesis of trisporic acids from b-carotene via retinal and trisporol. Experientia 26:348–349

    Article  CAS  PubMed  Google Scholar 

  30. Medina HR, Cerdá-Olmedo E, Al-Babili S (2011) Cleavage oxygenases for the biosynthesis of trisporoids and other apocarotenoids in Phycomyces. Mol Microbiol 82:199–208

    Article  CAS  PubMed  Google Scholar 

  31. Ramel F, Birtic S, Ginies C, Soubigou-Taconnat L, Triantaphylidès C, Havaux M (2012) Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. Proc Natl Acad Sci U S A 109:5535–5540

    Article  PubMed  PubMed Central  Google Scholar 

  32. Havaux M (2014) Carotenoid oxidation products as stress signals in plants. Plant J 79:597–606

    Article  CAS  PubMed  Google Scholar 

  33. Lv F, Zhou J, Zeng L, Xing D (2015) β-Cyclocitral upregulates salicylic acid signalling to enhance excess light acclimation in Arabidopsis. J Exp Bot 66:4719–4732

    Article  CAS  PubMed  Google Scholar 

  34. Jia KP, Dickinson AJ, Mi J, Cui G et al (2018) Anchorene is an endogenous diapocarotenoid required for anchor root formation in Arabidopsis. bioRxiv. https://doi.org/10.1101/496737

  35. Wang JY, Haider I, Jamil M, Fiorilli V et al (2018) The apocarotenoid metabolite zaxinone regulates growth and strigolactone biosynthesis in rice. Nat Commun 10:810

    Article  CAS  Google Scholar 

  36. Demurtas OC, Frusciante S, Ferrante P et al (2018) Candidate enzymes for saffron crocin biosynthesis are localized in multiple cellular compartments. Plant Physiol 177:990–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rodrigo MJ, Alquézar B, Alós E, Medina V, Carmona L, Bruno M et al (2013) A novel carotenoid cleavage activity involved in the biosynthesis of citrus fruit-specific apocarotenoid pigments. J Exp Bot 64:4461–4478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Estrada AF, Youssar L, Scherzinger D, Al-Babili S, Avalos J (2008) The ylo-1 gene encodes an aldehyde dehydrogenase responsible for the last reaction in the Neurospora carotenoid pathway. Mol Microbiol 69:1207–1220

    Article  CAS  PubMed  Google Scholar 

  39. Díaz-Sánchez V, Estrada AF, Trautmann D, Al-Babili S, Avalos J (2011) The gene carD encodes the aldehyde dehydrogenase responsible for neurosporaxanthin biosynthesis in Fusarium fujikuroi. FEBS J 278:3164–3176

    Article  CAS  PubMed  Google Scholar 

  40. Beltran JC, Stange C (2016) Apocarotenoids: a new carotenoid-derived pathway. Subcell Biochem 79:239–272

    Article  CAS  PubMed  Google Scholar 

  41. Frusciante S, Diretto G, Bruno M, Ferrante P et al (2014) Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis. Proc Natl Acad Sci U S A 111:12246–12251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ilg A, Beyer P, Al-Babili S (2009) Characterization of the rice carotenoid cleavage dioxygenase 1 reveals a novel route for geranial biosynthesis. FEBS J 276:736–747

    Article  CAS  PubMed  Google Scholar 

  43. Bruno M, Beyer P, Al-Babili S (2015) The potato carotenoid cleavage dioxygenase 4 catalyzes a single cleavage of β-ionone ring-containing carotenes and non-epoxidated xanthophylls. Arch Biochem Biophys 572:126–133

    Article  CAS  PubMed  Google Scholar 

  44. Bruno M, Koschmieder J, Wuest F, Schaub P, Fehling-Kaschek M, Timmer J et al (2016) Enzymatic study on AtCCD4 and AtCCD7 and their potential to form acyclic regulatory metabolites. J Exp Bot 67:5993–6005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Giuliano G, Al-Babili S, Von Lintig J (2003) Carotenoid oxygenases: cleave it or leave it. Trends Plant Sci 8:145–149

    Article  CAS  PubMed  Google Scholar 

  46. Bouvier F, Isner JC, Dogbo O, Camara B (2005) Oxidative tailoring of carotenoids: a prospect towards novel functions in plants. Trends Plant Sci 10:187–194

    Article  CAS  PubMed  Google Scholar 

  47. Ilg A, Yu Q, Schaub P, Beyer P, Al-Babili S (2010) Overexpression of the rice carotenoid cleavage dioxygenase 1 gene in Golden Rice endosperm suggests apocarotenoids as substrates in planta. Planta 232:691–699

    Article  CAS  PubMed  Google Scholar 

  48. Alder A, Holdermann I, Beyer P, Al-Babili S (2008) Carotenoid oxygenases involved in plant branching catalyse a highly specific conserved apocarotenoid cleavage reaction. Biochem J 416:289–296

    Article  CAS  PubMed  Google Scholar 

  49. Scherzinger D, Ruch S, Kloer DP, Wilde A, Al-Babili S (2006) Retinal is formed from apo-carotenoids in Nostoc sp. PCC7120: in vitro characterization of an apo-carotenoid oxygenase. Biochem J 398:361–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ilg A, Bruno M, Beyer P, Al-Babili S (2014) Tomato carotenoid cleavage dioxygenases 1A and 1B: relaxed double bond specificity leads to a plenitude of dialdehydes, mono-apocarotenoids and isoprenoid volatiles. FEBS Open Bio 4:584–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Collins P (1992) The role of annatto in food colouring. Foods Ingred Process Int 13:23–27

    Google Scholar 

  52. Timberlake CF, Henry BS (1986) Plant pigments as natural food colours. Endeavour 10:31–37

    Article  CAS  PubMed  Google Scholar 

  53. Palmer LS (1934) The biological and chemical nomenclature for the carotenoids. Science 79:488–490

    Article  CAS  PubMed  Google Scholar 

  54. Bouvier F, Odette D, Bilal C (2003) Biosynthesis of the food and cosmetic plant pigment bixin (annatto). Science 300:2089–2091

    Article  CAS  PubMed  Google Scholar 

  55. Mi J, Jia KP, Wang JY, Al-Babili S (2018) A rapid LC-MS method for qualitative and quantitative profiling of plant apocarotenoids. Anal Chim Acta 1035:87–95

    Article  CAS  PubMed  Google Scholar 

  56. Tie C, Hu T, Jia ZX, Zhang JL (2016) Derivatization strategy for the comprehensive characterization of endogenous fatty aldehydes using HPLC-multiple reaction monitoring. Anal Chem 88:7762–7768

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by base line funding and a Competitive Research Grant (CRG4) given to Salim Al-Babili from the King Abdullah University of Science and Technology (KAUST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salim Al-Babili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mi, J., Jia, KP., Balakrishna, A., Al-Babili, S. (2020). A Method for Extraction and LC-MS-Based Identification of Carotenoid-Derived Dialdehydes in Plants. In: Rodríguez-Concepción, M., Welsch, R. (eds) Plant and Food Carotenoids. Methods in Molecular Biology, vol 2083. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9952-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9952-1_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9951-4

  • Online ISBN: 978-1-4939-9952-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics