Skip to main content

Drug Loading and Distribution of ADCs After Reduction or IdeS Digestion and Reduction

  • Protocol
  • First Online:
Antibody-Drug Conjugates

Abstract

High-resolution native mass spectrometry (MS) provides accurate mass measurements (within 30 ppm) of intact ADCs and can also yield drug load distribution (DLD) and average drug to antibody ratio (DAR) in parallel with hydrophobic interaction chromatography (HIC). Native MS is furthermore unique in its ability to simultaneously detect covalent and noncovalent species in a mixture and for HIC peak identity assessment offline or online.

As an orthogonal method described in this chapter, LC-MS following ADC reduction or IdeS (Fabricator) digestion and reduction can also be used to measure the DLD of light chain and Fd fragments for hinge native cysteine residues such as brentuximab vedotin. Both methods allow also the measurement of average DAR for both monomeric and multimeric species. In addition, the Fc fragments can be analyzed in the same run, providing a complete glycoprofile and the demonstration or absence of additional conjugation of this subdomain involved in FcRn and Fc-gammaR binding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beck A, D’Atri V, Ehkirch A et al (2019) Cutting-edge multi-level analytical and structural characterization of antibody-drug conjugates: present and future. Expert Rev Proteomics 16:337–362. https://doi.org/10.1080/14789450.2019.1578215

    Article  CAS  PubMed  Google Scholar 

  2. Beck A, Terral G, Debaene F et al (2016) Cutting-edge mass spectrometry methods for the multi-level structural characterization of antibody-drug conjugates. Expert Rev Proteomics 13:157–183. https://doi.org/10.1586/14789450.2016.1132167

    Article  CAS  PubMed  Google Scholar 

  3. Wagner-Rousset E, Janin-Bussat M-C, Colas O et al (2014) Antibody-drug conjugate model fast characterization by LC-MS following IdeS proteolytic digestion. MAbs 6:273–285. https://doi.org/10.4161/mabs.26773

    Article  PubMed  Google Scholar 

  4. Beck A, Bussat M-C, Zorn N et al (2005) Characterization by liquid chromatography combined with mass spectrometry of monoclonal anti-IGF-1 receptor antibodies produced in CHO and NS0 cells. J Chromatogr B Analyt Technol Biomed Life Sci 819:203–218. https://doi.org/10.1016/j.jchromb.2004.06.052

    Article  CAS  PubMed  Google Scholar 

  5. Xu W, Peng Y, Wang F et al (2013) Method to convert N-terminal glutamine to pyroglutamate for characterization of recombinant monoclonal antibodies. Anal Biochem 436:10–12. https://doi.org/10.1016/j.ab.2013.01.017

    Article  CAS  PubMed  Google Scholar 

  6. Srzentić K, Nagornov KO, Fornelli L et al (2018) Multiplexed middle-down mass spectrometry as a method for revealing light and heavy chain connectivity in a monoclonal antibody. Anal Chem 90:12527–12535. https://doi.org/10.1021/acs.analchem.8b02398

    Article  CAS  PubMed  Google Scholar 

  7. Basa L (2013) Drug-to-antibody ratio (DAR) and drug load distribution by LC-ESI-MS. In: Ducry L (ed) Antibody-drug conjugates. Humana Press, Totowa, NJ, pp 285–293

    Chapter  Google Scholar 

  8. Chevreux G, Tilly N, Bihoreau N (2011) Fast analysis of recombinant monoclonal antibodies using IdeS proteolytic digestion and electrospray mass spectrometry. Anal Biochem 415:212–214. https://doi.org/10.1016/j.ab.2011.04.030

    Article  CAS  PubMed  Google Scholar 

  9. Sjögren J, Olsson F, Beck A (2016) Rapid and improved characterization of therapeutic antibodies and antibody related products using IdeS digestion and subunit analysis. Analyst 141:3114–3125. https://doi.org/10.1039/C6AN00071A

    Article  CAS  PubMed  Google Scholar 

  10. Firth D, Bell L, Squires M et al (2015) A rapid approach for characterization of thiol-conjugated antibody–drug conjugates and calculation of drug–antibody ratio by liquid chromatography mass spectrometry. Anal Biochem 485:34–42. https://doi.org/10.1016/j.ab.2015.06.001

    Article  CAS  PubMed  Google Scholar 

  11. Friese OV, Smith JN, Brown PW, Rouse JC (2018) Practical approaches for overcoming challenges in heightened characterization of antibody-drug conjugates with new methodologies and ultrahigh-resolution mass spectrometry. MAbs 10:335–345. https://doi.org/10.1080/19420862.2018.1433973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lin TJ, Beal KM, Brown PW et al (2019) Evolution of a comprehensive, orthogonal approach to sequence variant analysis for biotherapeutics. mAbs 11:1–12. https://doi.org/10.1080/19420862.2018.1531965

    Article  CAS  PubMed  Google Scholar 

  13. Janin-Bussat M-C, Dillenbourg M, Corvaia N et al (2015) Characterization of antibody drug conjugate positional isomers at cysteine residues by peptide mapping LC–MS analysis. J Chromatogr B 981–982:9–13. https://doi.org/10.1016/j.jchromb.2014.12.017

    Article  CAS  Google Scholar 

  14. D’Atri V, Fekete S, Stoll D et al (2018) Characterization of an antibody-drug conjugate by hydrophilic interaction chromatography coupled to mass spectrometry. J Chromatogr B 1080:37–41. https://doi.org/10.1016/j.jchromb.2018.02.026

    Article  CAS  Google Scholar 

  15. Said N, Gahoual R, Kuhn L et al (2016) Structural characterization of antibody drug conjugate by a combination of intact, middle-up and bottom-up techniques using sheathless capillary electrophoresis—tandem mass spectrometry as nanoESI infusion platform and separation method. Anal Chim Acta 918:50–59. https://doi.org/10.1016/j.aca.2016.03.006

    Article  CAS  PubMed  Google Scholar 

  16. Beck A, Goetsch L, Dumontet C, Corvaïa N (2017) Strategies and challenges for the next generation of antibody–drug conjugates. Nat Rev Drug Discov 16:315–337. https://doi.org/10.1038/nrd.2016.268

    Article  CAS  PubMed  Google Scholar 

  17. Botzanowski T, Erb S, Hernandez-Alba O et al (2017) Insights from native mass spectrometry approaches for top- and middle-level characterization of site-specific antibody-drug conjugates. mAbs 9:801–811. https://doi.org/10.1080/19420862.2017.1316914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Beck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wagner-Rousset, E. et al. (2020). Drug Loading and Distribution of ADCs After Reduction or IdeS Digestion and Reduction. In: Tumey, L. (eds) Antibody-Drug Conjugates. Methods in Molecular Biology, vol 2078. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9929-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9929-3_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9928-6

  • Online ISBN: 978-1-4939-9929-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics