Skip to main content

Separation of Nuclear and Cytoplasmic Fractions for Chimeric RNA Characterization

  • Protocol
  • First Online:
Chimeric RNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2079))

Abstract

Cellular organelle fractionation, a basic technique in molecular biology, has been devised to separate various cell components, which can then be purified and analyzed biochemically. Isolation of proteins or RNAs from these fractions provides insight into fraction-specific or even organelle-specific expression, which may indicate potential modes of functionality or likelihood for a transcript to encode a protein. These findings can be further utilized to observe differences in expression between normal and diseased cell states, such as cancer. We utilize these techniques to observe expression of chimeric RNAs in these fractions. Within this chapter we describe the most frequently used cellular fractionation technique: the separation of the cytoplasmic fraction from the nuclear fraction in a cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yates JR 3rd, Gilchrist A, Howell KE, Bergeron JJ (2005) Proteomics of organelles and large cellular structures. Nat Rev Mol Cell Biol 6:702–714

    Article  CAS  Google Scholar 

  2. Breckels LM, Gatto L, Christoforou A, Groen AJ, Lilley KS, Trotter MW (2013) The effect of organelle discovery upon sub-cellular protein localisation. J Proteome 88:129–140

    Article  CAS  Google Scholar 

  3. Dreger M (2003) Proteome analysis at the level of subcellular structures. Eur J Biochem 270:589–599

    Article  CAS  Google Scholar 

  4. Chandramouli K, Qian PY (2009) Proteomics: challenges, techniques and possibilities to overcome biological sample complexity. Hum Genomics Proteomics 2009

    Google Scholar 

  5. Qin F, Song Z, Babiceanu M, Song Y, Facemire L, Singh R, Adli M, Li H (2015) Discovery of CTCF-sensitive Cis-spliced fusion RNAs between adjacent genes in human prostate cells. PLoS Genet 11:e1005001

    Article  Google Scholar 

  6. Qin F, Zhang Y, Liu J, Li H (2017) SLC45A3-ELK4 functions as a long non-coding chimeric RNA. Cancer Lett 404:53–61

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Qin, F., Shi, X., Li, H. (2020). Separation of Nuclear and Cytoplasmic Fractions for Chimeric RNA Characterization. In: Li, H., Elfman, J. (eds) Chimeric RNA. Methods in Molecular Biology, vol 2079. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9904-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9904-0_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9903-3

  • Online ISBN: 978-1-4939-9904-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics