Skip to main content

Perioperative Monitoring of Autonomic Nervous Activity

  • Protocol
  • First Online:
General Anesthesia Research

Part of the book series: Neuromethods ((NM,volume 150))

  • 617 Accesses

Abstract

The role of autonomous nervous system (ANS) is becoming more evident as accumulating information about human physiology arises. Therefore, monitoring its activity during periods of abrupt changes, like those in perioperative settings, becomes essential for understanding, predicting, and managing their effects. There are several methods for measuring ANS, although none of them is yet broadly applied in perioperative period.

Electrodermal activity tracks autonomic nervous activity via skin electrical properties. Heart rate variability and surgical stress index integrate mainly cardiovascular monitoring, digital pupillometry records pupil’s dynamics; other methods use laboratory measurements. No matter the focus of each method, careful consideration for its limitation should be made before its use. Summarizing, it seems that, instead of searching for the “gold-standard,” a combination of methods should be used.

The present chapter presents selected tools used for perioperative autonomic nervous activity monitoring. Future research perspectives are also offered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parker SD, Breslow MJ, Frank SM et al (1995) Catecholamine and cortisol responses to lower extremity revascularization: correlation with outcome variables. Perioperative Ischemia Randomized Anesthesia Trial Study Group. Crit Care Med 23:1954–1961

    Article  CAS  Google Scholar 

  2. Myles PS, Hunt JO, Fletcher H et al (2002) Remifentanil, fentanyl and cardiac surgery: a double blinded, randomized, controlled trial of costs and outcomes. Anesth Analg 95:805–812

    CAS  PubMed  Google Scholar 

  3. London MJ (2006) Beta-blockade in the perioperative period: where do we stand after all the trials? Semin Cardiothorac Vasc Anesth 10:17–23

    Article  Google Scholar 

  4. Vanhorebeek I, Ingels C, Van den Berghe G (2006) Intensive insulin therapy in high-risk cardiac surgery patients: evidence from the Leuven randomized study. Semin Cardiothorac Vasc Anesth 18:309–316

    Google Scholar 

  5. Pud D, Amid A (2005) Anxiety as a predictor of pain magnitude following termination of first-trimester pregnancy. Pain Med 6:143–148

    Article  Google Scholar 

  6. Bucsein W (2012) Electrodermal activity, 2nd edn. Springer Science + Business Media, New York, pp 2–31

    Book  Google Scholar 

  7. Virtualmedicalcenter.com [Internet]: Virtual Medical Center; c2012: Sweating [Cited 2018 Dec 10]. Available from: http://www.virtualmedicalcentre.com/anatomy/sweating perspiration/75

  8. Aslanidis T (2014) Electrodermal activity: applications in perioperative care. Int J Med Res Health Sci 3(3):687–695

    Article  Google Scholar 

  9. Hall E, Lapworth R (2010) Use of sweat conductivity measurements. Ann Clin Biochem 47:390–391

    Article  Google Scholar 

  10. Piacentini Rm (2001) Reaviling individual features in galvanic skin response signals. PhD. thesis. Reading University, Italy, pp 8–13

    Google Scholar 

  11. Christie M (1981) Electrodermal activity in the 80s: a review. J R Soc Med 41:616–622

    Article  Google Scholar 

  12. Braithwaite J, Watson DG, Jones R et al (2013) Guide for analysing electrodermal activity (EDA) & skin conductance responses (SCRs) for psychological experiments. Technical Report: Selective Attention & Awareness Laboratory (SAAL) Behavioural Brain Sciences Centre, University of Birmingham, Birmingham. Available from: http://www.biopac.com/wp-content/uploads/EDA-SCR-Analysis.pdf. Accessed 20 Dec 2018

  13. Boucsein W, Fowles DC, Grimnes S et al (2012) Society for Psychophysiological Research ad hoc Committee on Electrodermal measures. Publication recommendations for electrodermal measurements. Psychophysiology 49(8):1017–1034. https://doi.org/10.1111/j.1469-8986.2012.01384.x

    Article  PubMed  Google Scholar 

  14. Shackel B (1959) Skin-drilling: a method of diminishing galvanic skin-potentials. Am J Psychol 72(1):114–121

    Article  Google Scholar 

  15. Aslanidis T (2015) Perspectives of autonomic nervous system perioperative monitoring–focus on selected tools. Int Arch Med 8:22):1–22):9

    Google Scholar 

  16. Huiku Μ, Uutela K, Van Gils M et al (2007) Assessment of surgical stress during general anaesthesia. Br J Anaesth 98(4):447–455

    Article  CAS  Google Scholar 

  17. Haiku M, Kamppari L, Viertiö-Oja H (2016) Surgical pletysmographic index (SPI) in anesthesia practice. GE Healthcare White paper JB21042XX, 2014. Available from: http://www3.gehealthcare.co.uk/~/media/documents/us-global/products/clinical-consumables/brochures/general/spi%20whitepaperjb21042xx1nov191.pdf?Parent=%7B24E8DD90-59E0-4C23-B15C-1EFA3C7655A1%7D. Accessed 12 Dec 2018

  18. Quick Guide Surgical Pleth Index. GE Healthcare (2014). Available from: http://www3.gehealthcare.co.uk/engb/products/categories/clinical_consumables/monitoring_solutions/spio2_sensors. Accessed 02 Jan 2017

  19. Kang H (2015) Intraoperative nociception monitoring. Anesth Pain Med 10:227–234

    Article  Google Scholar 

  20. Malon RSP, Sadir S, Balakrishnan M, Córcoles EP (2014) Saliva-based biosensors: noninvasive monitoring tool for clinical diagnostics. Biomed Res Int 2014:962903

    Article  Google Scholar 

  21. Díaz Gómez MM, Bocanegra Jaramillo OL, Teixeira RR et al (2013) Salivary surrogates of plasma nitrite and Catecholamines during a 21-week training season in swimmers. PLoS One 8(5):e64043

    Article  Google Scholar 

  22. Sobas EM, Reinoso R, Cuadrado-Asensio R et al (2016) Reliability of potential pain biomarkers in the saliva of healthy subjects: inter-individual differences and intersession variability. PLoS One 11(12):e0166976

    Article  Google Scholar 

  23. Cozma S, Dima-Cozma LC, Ghiciuc CM et al (2017) Salivary cortisol and α-amylase: subclinical indicators of stress as cardiometabolic risk. Braz J Med Biol Res 50(2):e5577

    Article  CAS  Google Scholar 

  24. Nater UM, Rohleder N (2009) Salivary alpha-amylase as a non-invasive biomarker for the sympathetic nervous system: current state of research. Psychoneuroendocrinology 34(4):486–496

    Article  CAS  Google Scholar 

  25. Thoma MV, Kirschbaum C, Wolf JM (2012) Acute stress responses in salivary alpha-amylase predicts increases of plasma norepinephrine. Biol Psychol 91(3):342–348

    Article  Google Scholar 

  26. Nater UM, Rohleder N, Gaab J et al (2005) Human salivary alpha-amylase reactivity in a psychosocial stress paradigm. Int J Psychophysiol 55(3):333–342

    Article  Google Scholar 

  27. Chiappin S, Antonelli G, Gatti R (2007) Saliva specimen: a new laboratory tool for diagnostic and basic investigation. Clin Chim Acta 383(1-2):30–40

    Article  CAS  Google Scholar 

  28. Yamaguchi M (2010) Saliva sensors in point-of care testing. Sensor Materials 22(4):143–153

    CAS  Google Scholar 

  29. Bosch JA, Veerman EC, de Geus EJ (2011) α-Amylase as a reliable and convenient measure of sympathetic activity: don't start salivating just yet! Psychoneuroendocrinology 36(4):449–453

    Article  CAS  Google Scholar 

  30. Sahu GK, Upadhyay S, Panna SM (2014) Salivary alpha amylase activity in human beings of different age groups subjected to psychological stress. Reliable measure of SNS activity. Indian J Clin Biochem 29(4):485–490

    Article  CAS  Google Scholar 

  31. Liu Y, Granger DA, Kim K (2017) Diurnal salivary alpha-amylase dynamics among dementia family caregivers. Health Psychol 36(2):160–168

    Article  Google Scholar 

  32. Aslanidis T, Kontogounis G (2015) Perioperative digital pupillometry-the future? Greek E-Journal of Perioperative Medicine 13(b):24–40

    Google Scholar 

  33. Rose D, Meeker M, Bacchetti P et al (2005) Evaluation of the portable infrared pupillometer. Neurosurgery 57:198–203

    Article  Google Scholar 

  34. Taylor WR, Chen JW, Meltzer H et al (2003) Quantitative pupillometry, a new technology: normative data and preliminary observations in patients with acute head injury. J Neurosurgery 98:205–213

    Article  Google Scholar 

  35. Abad-Torrent A, Sueiras-Gil A, Martínez-Vilalta M (2017) Monitoring of the intraoperative analgesia by pupillometry during laparoscopic splenectomy for splenic hydatid cyst. J Clin Anesth 36:94–97

    Article  Google Scholar 

  36. Zafar SF, Suarez JI (2014) Automated pupillometer for monitoring the critically ill patient: a critical appraisal. J Crit Care 29(4):599–603

    Article  Google Scholar 

  37. Deschamps Al DA (2007) Analysis of heart rate and blood pressure variability to assess autonomic reserves: its role in anesthesiology. Anesthesiology rounds 6(2):1–6.7

    Google Scholar 

  38. Draghici AD, Taylor JA (2016) The physiological basis and measurement of heart rate variability in humans. J Physiol Anthropol 235:22. https://doi.org/10.1186/s40101-016-0113-7

    Article  Google Scholar 

  39. Kleiger RE, Stein PK, Bosner MS et al (1992) Time domain measurements of heart rate variability. Cardiol Clin 10:487–498

    Article  CAS  Google Scholar 

  40. Montano N, Ruscone TG, Porta A et al (1994) Power spectrum analysis of heart rate variability to assess the changes in sympathovagal balance during graded orthostatic tilt. Circulation 90(4):1826–1831

    Article  CAS  Google Scholar 

  41. Chi X, Zhou J, Shi P et al (2016) Analysis methods of short-term non-linear heart rate variability and their application in clinical medicine. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 33(1):193–200

    PubMed  Google Scholar 

  42. Nishiyama T (2016) Changes in heart rate variability during anaesthesia induction using sevoflurane or isoflurane with nitrous oxide. Anaesthesiol Intensive Ther 48(4):248–251

    Article  Google Scholar 

  43. Boselli E, Logier R, Bouvet L et al (2016) Prediction of hemodynamic reactivity using dynamic variations of analgesia/nociception index (ΔANI). J Clin Monit Comput 30(6):977–984

    Article  CAS  Google Scholar 

  44. Ogawa Y, Kamijo YI, Ikegawa S et al (2017) Effects of postural change from supine to head-up tilt on the skin sympathetic nerve activity component synchronised with the cardiac cycle in warmed men. J Physiol 595(4):1185–1200

    Article  CAS  Google Scholar 

  45. Hanss R, Renner J, Ilies C et al (2008) Does heart rate variability predict hypotension and bradycardia after induction of general anaesthesia in high risk cardiovascular patients? Anaesthesia 63(2):129–135

    Article  CAS  Google Scholar 

  46. Biswas AK, Scott WA, Sommerauer JF (2000) Heart rate variability after acute traumatic brain injury in children. Crit Care Med 28:3907–3912

    Article  CAS  Google Scholar 

  47. Jurak P, Halamek V, Leinveber P et al (2012) Respiratory induced heart rate and blood pressure variability during mechanical ventilation in critically ill and brain death patients. Conf Proc IEEE Eng Med Biol Soc 2012:3821–3824

    CAS  PubMed  Google Scholar 

  48. Iozzia L, Cerina L, Mainardi L (2016) Relationships between heart-rate variability and pulse-rate variability obtained from video-PPG signal using ZCA. Physiol Meas 37(11):1934–1944

    Article  Google Scholar 

  49. Siepmann T, Illigens BM, Reichmann H et al (2014) Axon-reflex based nerve fiber function assessment in the detection of autonomic neuropathy. Nervenarzt 85(10):1309–1314

    Article  CAS  Google Scholar 

  50. Novak P (2011) Quantitative autonomic testing. J Vis Exp 19(53). pii 2502

    Google Scholar 

  51. Kleggetveit IP, Skulberg PK, Jørum E (2016) Complex regional pain syndrome following viper-bite. Scand J Pain 10:15–18

    Article  Google Scholar 

  52. Biehle-Hulette SJ, Krailler JM, Elstun LT et al (2014) Thermoregulatory vs. event sweating--comparison of clinical methodologies, physiology and results. Int J Cosmet Sci 36(1):102–108

    Article  CAS  Google Scholar 

  53. Cascella M, Bimonte S, Muzio MR (2018) Towards a better understanding of anesthesia emergence mechanisms: research and clinical implications. World J Methodol 8(2):9–16

    Article  Google Scholar 

  54. Cascella M, Fusco R, Caliendo D et al (2017) Anesthetic dreaming, anesthesia awareness and patient satisfaction after deep sedation with propofol target controlled infusion: a prospective cohort study of patients undergoing day case breast surgery. Oncotarget 8(45):79248–79256

    Article  Google Scholar 

  55. Cascella M (2016) Mechanisms underlying brain monitoring during anesthesia: limitations, possible improvements, and perspectives. Korean J Anesthesiol 69(2):113–120

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Aslanidis, T. (2020). Perioperative Monitoring of Autonomic Nervous Activity. In: Cascella, M. (eds) General Anesthesia Research. Neuromethods, vol 150. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9891-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9891-3_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9890-6

  • Online ISBN: 978-1-4939-9891-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics