Skip to main content

Determination of Phosphohistidine Stoichiometry in Histidine Kinases by Intact Mass Spectrometry

  • Protocol
  • First Online:
Histidine Phosphorylation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2077))

  • 1028 Accesses

Abstract

Protein histidine phosphorylation has largely remained unexplored due to the challenges of analyzing relatively unstable phosphohistidine-containing proteins. We describe a procedure for determining the stoichiometry of histidine phosphorylation on the human histidine kinases NME1 and NME2 by intact mass spectrometry under conditions that retain this acid-labile protein modification. By characterizing these two model histidine protein kinases in the absence and presence of a suitable phosphate donor, the stoichiometry of histidine phosphorylation can be determined. The described method can be readily adapted for the analysis of other proteins containing phosphohistidine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Loomis WF, Shaulsky G, Wang N (1997) Histidine kinases in signal transduction pathways of eukaryotes. J Cell Sci 110:1141–1145

    CAS  PubMed  Google Scholar 

  2. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298(5600):1912

    Article  CAS  Google Scholar 

  3. Cohen P (2002) The origins of protein phosphorylation. Nat Cell Biol 4(5):127–130

    Article  Google Scholar 

  4. Adam K, Hunter T (2018) Histidine kinases and the missing phosphoproteome from prokaryotes to eukaryotes. Pathol Focus 98:233–247

    CAS  Google Scholar 

  5. Kee JM, Muir TW (2012) Chasing phosphohistidine, an elusive sibling in the phosphoamino acid family. ACS Chem Biol 7(1):44–51

    Article  CAS  Google Scholar 

  6. Klumpp S, Krieglstein J (2009) Reversible phosphorylation of histidine residues in proteins from vertebrates. Sci Signal 2(61):1–4

    Article  Google Scholar 

  7. Fuhs SR et al (2015) Monoclonal 1- and 3-phosphohistidine antibodies: new tools to study histidine phosphorylation. Cell 162(1):198–210

    Article  CAS  Google Scholar 

  8. Srivastava S et al (2016) Histidine phosphorylation relieves copper inhibition in the mammalian potassium channel KCa3.1. eLife 5:pii: e16093

    Article  Google Scholar 

  9. Puttick J, Baker E, Delbaere L (2008) Histidine phosphorylation in biological systems. Biochim Biophys Acta 1784(1):100–105

    Article  CAS  Google Scholar 

  10. Attwood PV (2013) P/N bond protein phosphatases. Biochim Biophys Acta 1834:470–478

    Article  CAS  Google Scholar 

  11. Attwood PV, Muimo R (2018) The actions of NME1/NDPK-A and NME2/NDPK-B as protein kinases. Lab Investig 98:283–290

    Article  CAS  Google Scholar 

  12. Attwood PV, Wieland T (2015) Nucleoside diphosphate kinase as protein histidine kinase. Naunyn Schmiedeberg's Arch Pharmacol 388(2):153–160

    Article  CAS  Google Scholar 

  13. Wu Z, Tiambeng TN, CaI W, Chen B, Lin Z, Zachery R, Gregorich ZR, Ge Y (2018) Impact of phosphorylation on the mass spectrometry quantification of intact phosphoproteins. Anal Chem 90(8):4935–4939

    Article  CAS  Google Scholar 

  14. Haydon CE, Eyers PA, Aveline-Wolf LD, Resing KA, Maller JL (2003) Identification of novel phosphorylation sites on Xenopus laevis Aurora A and analysis of phosphopeptide enrichment by immobilized metal-affinity chromatography. Mol Cell Proteomics 2(10):1055–1067

    Article  CAS  Google Scholar 

  15. Schweppe RE, Haydon CE, Lewis TS, Resing KA, Ahn NG (2003) The characterization of protein post-translational modifications by mass spectrometry. Acc Chem Res 36(6):453–456

    Article  CAS  Google Scholar 

  16. Johnson H, Eyers CE, Eyers PA, Beynon RJ, Gaskell SJ (2009) Rigorous determination of the stoichiometry of protein phosphorylation using mass spectrometry. J Am Soc Mass Spectrom 20(12):2211–2220

    Article  CAS  Google Scholar 

  17. Byrne DP, Vonderach M, Ferries S, Brownridge PJ, Eyers CE, Eyers PA (2016) cAMP-dependent protein kinase (PKA) complexes probed by complementary differential scanning fluorimetry and ion mobility-mass spectrometry. Biochem J 473(19):3159–3175

    Article  CAS  Google Scholar 

  18. Ferries S, Perkins S, Brownridge PJ, Campbell A, Eyers PA, Jones AR, Eyers CE (2017) Evaluation of parameters for confident phosphorylation site localization using an orbitrap fusion tribrid mass spectrometer. J Proteome Res 16(9):3448–3459

    Article  CAS  Google Scholar 

  19. Attwood PV, Besant PG, Piggott MJ (2011) Focus on phosphoaspartate and phosphoglutamate. Amino Acids 40(4):1035–1051

    Article  CAS  Google Scholar 

  20. Besant PG, Attwood PV, Piggott MJ (2009) Focus on phosphoarginine and phospholysine. Curr Protein Pept Sci 10(6):536–550

    Article  CAS  Google Scholar 

  21. Hardman G, Perkins S, Ruan Z, Kannan N, Brownridge P, Byrne DP, Eyers PA, Jones AR, Eyers CE (2017) Extensive non-canonical phosphorylation in human cells revealed using strong-anion exchange-mediated phosphoproteomics. bioRxiv 202820. https://doi.org/10.1101/202820

  22. Hardman G, Perkins S, Brownridge PJ, Clarke CJ, Byrne DP, Campbell AE, Anton Kalyuzhnyy A, Myall A, Eyers PA, Jones AR, Eyers CE (2019) Strong anion exchange‐mediated phosphoproteomics reveals extensive human non‐canonical phosphorylation. The EMBO Journal. https://doi.org/10.15252/embj.2018100847

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire E. Eyers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tomlinson, L.J., Clubbs Coldron, A.K.M., Eyers, P.A., Eyers, C.E. (2020). Determination of Phosphohistidine Stoichiometry in Histidine Kinases by Intact Mass Spectrometry. In: Eyers, C. (eds) Histidine Phosphorylation. Methods in Molecular Biology, vol 2077. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9884-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9884-5_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9883-8

  • Online ISBN: 978-1-4939-9884-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics