Skip to main content

Explore Protein–Protein Interactions for Cancer Target Discovery Using the OncoPPi Portal

  • Protocol
  • First Online:
Protein-Protein Interaction Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2074))

Abstract

Protein–protein interactions (PPIs) control all functions and physiological states of the cell. Identification and understanding of novel PPIs would facilitate the discovery of new biological models and therapeutic targets for clinical intervention. Numerous resources and PPI databases have been developed to define a global interactome through the PPI data mining, curation, and integration of different types of experimental evidence obtained with various methods in different model systems. On the other hand, the recent advances in cancer genomics and proteomics have revealed a critical role of genomic alterations in acquisition of cancer hallmarks through a dysregulated network of oncogenic PPIs. Deciphering of cancer-specific interactome would uncover new mechanisms of oncogenic signaling for therapeutic interrogation. Toward this goal our team has developed a high-throughput screening platform to detect PPIs between cancer-associated proteins in the context of cancer cells. The established network of oncogenic PPIs, termed the OncoPPi network, is available through the OncoPPi Portal, an interactive web resource that allows to access and interpret a high-quality cancer-focused network of PPIs experimentally detected in cancer cell lines integrated with the analysis of mutual exclusivity of genomic alterations, cellular co-localization of interacting proteins, domain-domain interactions, and therapeutic connectivity. This chapter presents a guide to explore the OncoPPi network using the OncoPPi Portal to facilitate cancer biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Petta I, Lievens S, Libert C, Tavernier J, De Bosscher K (2016) Modulation of protein-protein interactions for the development of novel therapeutics. Mol Ther 24(4):707–718

    Article  CAS  Google Scholar 

  2. Ballatore C, Brunden KR, Trojanowski JQ, Lee VM, Smith AB 3rd, Huryn DM (2011) Modulation of protein-protein interactions as a therapeutic strategy for the treatment of neurodegenerative tauopathies. Curr Top Med Chem 11(3):317–330

    Article  CAS  Google Scholar 

  3. Morelli X, Bourgeas R, Roche P (2011) Chemical and structural lessons from recent successes in protein-protein interaction inhibition (2P2I). Curr Opin Chem Biol 15(4):475–481

    Article  CAS  Google Scholar 

  4. Scott DE, Bayly AR, Abell C, Skidmore J (2016) Small molecules, big targets: drug discovery faces the protein-protein interaction challenge. Nat Rev Drug Discov 15(8):533–550

    Article  CAS  Google Scholar 

  5. Arkin MR, Tang Y, Wells JA (2014) Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. Chem Biol 21(9):1102–1114

    Article  CAS  Google Scholar 

  6. Huttlin EL, Ting L, Bruckner RJ, Gebreab F, Gygi MP, Szpyt J et al (2015) The BioPlex network: a systematic exploration of the human Interactome. Cell 162(2):425–440

    Article  CAS  Google Scholar 

  7. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N et al (2005) Towards a proteome-scale map of the human protein-protein interaction network. Nature 437(7062):1173–1178

    Article  CAS  Google Scholar 

  8. Luck K, Sheynkman GM, Zhang I, Vidal M (2017) Proteome-scale human interactomics. Trends Biochem Sci 42(5):342–354

    Article  CAS  Google Scholar 

  9. Vo TV, Das J, Meyer MJ, Cordero NA, Akturk N, Wei X et al (2016) A proteome-wide fission yeast interactome reveals network evolution principles from yeasts to human. Cell 164(1–2):310–323

    Article  CAS  Google Scholar 

  10. Rolland T, Tasan M, Charloteaux B, Pevzner SJ, Zhong Q, Sahni N et al (2014) A proteome-scale map of the human interactome network. Cell 159(5):1212–1226

    Article  CAS  Google Scholar 

  11. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H et al (2005) A human protein-protein interaction network: a resource for annotating the proteome. Cell 122(6):957–968

    Article  CAS  Google Scholar 

  12. Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T et al (2009) PID: the pathway interaction database. Nucleic Acids Res 37(Database issue):D674–D679

    Article  CAS  Google Scholar 

  13. Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter F et al (2014) The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res 42(Database issue):D358–D363

    Article  CAS  Google Scholar 

  14. Chatr-Aryamontri A, Breitkreutz BJ, Oughtred R, Boucher L, Heinicke S, Chen D et al (2015) The BioGRID interaction database: 2015 update. Nucleic Acids Res 43(Database issue):D470–D478

    Article  CAS  Google Scholar 

  15. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J et al (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43(Database issue):D447–D452

    Article  CAS  Google Scholar 

  16. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45(D1):D353–D361

    Article  CAS  Google Scholar 

  17. Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P et al (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38.(Web Server issue:W214–W220

    Article  CAS  Google Scholar 

  18. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  Google Scholar 

  19. Ivanov AA, Khuri FR, Fu H (2013) Targeting protein-protein interactions as an anticancer strategy. Trends Pharmacol Sci 34(7):393–400

    Article  CAS  Google Scholar 

  20. Nero TL, Morton CJ, Holien JK, Wielens J, Parker MW (2014) Oncogenic protein interfaces: small molecules, big challenges. Nat Rev Cancer 14(4):248–262

    Article  CAS  Google Scholar 

  21. Ran X, Gestwicki JE (2018) Inhibitors of protein-protein interactions (PPIs): an analysis of scaffold choices and buried surface area. Curr Opin Chem Biol 44:75–86

    Article  CAS  Google Scholar 

  22. Potts MB, Kim HS, Fisher KW, Hu Y, Carrasco YP, Bulut GB et al (2013) Using functional signature ontology (FUSION) to identify mechanisms of action for natural products. Sci Signal 6(297):ra90

    Article  Google Scholar 

  23. Wang K, Saito M, Bisikirska BC, Alvarez MJ, Lim WK, Rajbhandari P et al (2009) Genome-wide identification of post-translational modulators of transcription factor activity in human B cells. Nat Biotechnol 27(9):829–839

    Article  CAS  Google Scholar 

  24. Babur O, Gonen M, Aksoy BA, Schultz N, Ciriello G, Sander C et al (2015) Systematic identification of cancer driving signaling pathways based on mutual exclusivity of genomic alterations. Genome Biol 16:45

    Article  Google Scholar 

  25. Ciriello G, Cerami E, Sander C, Schultz N (2012) Mutual exclusivity analysis identifies oncogenic network modules. Genome Res 22(2):398–406

    Article  CAS  Google Scholar 

  26. Rosenbluh J, Nijhawan D, Cox AG, Li X, Neal JT, Schafer EJ et al (2012) Beta-catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell 151(7):1457–1473

    Article  CAS  Google Scholar 

  27. Cowley GS, Weir BA, Vazquez F, Tamayo P, Scott JA, Rusin S et al (2014) Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies. Sci Data 1:140035

    Article  CAS  Google Scholar 

  28. Tsherniak A, Vazquez F, Montgomery PG, Weir BA, Kryukov G, Cowley GS et al (2017) Defining a cancer dependency map. Cell 170(3):564–576.e16

    Article  CAS  Google Scholar 

  29. Alanis-Lobato G, Andrade-Navarro MA, Schaefer MH (2017) HIPPIE v2.0: enhancing meaningfulness and reliability of protein-protein interaction networks. Nucleic Acids Res 45(D1):D408–DD14

    Article  CAS  Google Scholar 

  30. Meng X, Wang J, Yuan C, Li X, Zhou Y, Hofestadt R et al (2015) CancerNet: a database for decoding multilevel molecular interactions across diverse cancer types. Oncogene 4:e177

    Article  CAS  Google Scholar 

  31. Van Coillie S, Liang L, Zhang Y, Wang H, Fang JY, Xu J (2016) OncoBinder facilitates interpretation of proteomic interaction data by capturing coactivation pairs in cancer. Oncotarget 7(14):17608–17615

    PubMed  PubMed Central  Google Scholar 

  32. Li Z, Ivanov AA, Su R, Gonzalez-Pecchi V, Qi Q, Liu S et al (2017) The OncoPPi network of cancer-focused protein-protein interactions to inform biological insights and therapeutic strategies. Nat Commun 8:14356. https://doi.org/10.1038/ncomms

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ivanov AA, Gonzalez-Pecchi V, Khuri L, Niu T, Wang Y, Xu R et al (2017) OncoPPi-informed discovery of mitogen-activated protein kinase kinase 3 as a novel binding partner of c-Myc. Oncogene 36(42):5852–5860

    Article  CAS  Google Scholar 

  34. Xiong J, Pecchi VG, Qui M, Ivanov AA, Mo X, Niu Q et al (2018) Development of a time-resolved fluorescence resonance energy transfer ultrahigh-throughput screening assay for targeting the NSD3 and MYC interaction. Assay Drug Dev Technol 16(2):96–106

    Article  CAS  Google Scholar 

  35. Ivanov AA, Revennaugh B, Rusnak L, Gonzalez-Pecchi V, Mo X, Johns MA et al (2018) The OncoPPi Portal: an integrative resource to explore and prioritize protein-protein interactions for cancer target discovery. Bioinformatics 34(7):1183–1191

    Article  CAS  Google Scholar 

  36. Mo XL, Qi Q, Ivanov AA, Niu Q, Luo Y, Havel J et al (2017) AKT1, LKB1, and YAP1 revealed as MYC interactors with NanoLuc-based protein-fragment complementation assay. Mol Pharmacol 91(4):339–347

    Article  CAS  Google Scholar 

  37. Harati S, Cooper LA, Moran JD, Giuste FO, Du Y, Ivanov AA et al (2017) MEDICI: mining essentiality data to identify critical interactions for cancer drug target discovery and development. PLoS One 12(1):e0170339

    Article  Google Scholar 

  38. Gray KA, Yates B, Seal RL, Wright MW, Bruford EA (2015) Genenames.org: the HGNC resources in 2015. Nucleic Acids Res 43(Database issue):D1079–D1085

    Article  CAS  Google Scholar 

  39. Aken BL, Ayling S, Barrell D, Clarke L, Curwen V, Fairley S et al (2016) The Ensembl gene annotation system. Database (Oxford) 2016

    Google Scholar 

  40. UniProt: the universal protein knowledgebase (2017) Nucleic Acids Res 45(D1):D158–DD69

    Article  Google Scholar 

  41. NCBI Resource Coordinators (2017) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 45(D1):D12–DD7

    Article  Google Scholar 

  42. Aksoy BA, Dancik V, Smith K, Mazerik JN, Ji Z, Gross B et al (2017) CTD2 dashboard: a searchable web interface to connect validated results from the cancer target discovery and development network. Database (Oxford) 2017

    Google Scholar 

  43. Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR et al (2014) Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505(7484):495–501

    Article  CAS  Google Scholar 

  44. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2(5):401–404

    Article  Google Scholar 

  45. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6(269):pl1

    Article  Google Scholar 

  46. Rees MG, Seashore-Ludlow B, Cheah JH, Adams DJ, Price EV, Gill S et al (2016) Correlating chemical sensitivity and basal gene expression reveals mechanism of action. Nat Chem Biol 12(2):109–116

    Article  CAS  Google Scholar 

  47. Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A et al (2016) PubChem substance and compound databases. Nucleic Acids Res 44(D1):D1202–D1213

    Article  CAS  Google Scholar 

  48. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P et al (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34(Database issue):D668–D672

    Article  CAS  Google Scholar 

  49. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S et al (2013) Genomics of drug sensitivity in cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res 41(Database issue):D955–D961

    CAS  PubMed  Google Scholar 

  50. He X, Zhang J (2006) Why do hubs tend to be essential in protein networks? PLoS Genet 2(6):e88

    Article  Google Scholar 

  51. Jeong H, Mason SP, Barabasi AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411(6833):41–42

    Article  CAS  Google Scholar 

  52. Tomczak K, Czerwinska P, Wiznerowicz M (2015) The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn) 19(1A):A68–A77

    Google Scholar 

  53. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25(1):25–29

    Article  CAS  Google Scholar 

  54. The Gene Ontology Consortium (2017) Expansion of the gene ontology knowledgebase and resources. Nucleic Acids Res 45(D1):D331–D3D8

    Article  Google Scholar 

  55. Thul PJ, Akesson L, Wiking M, Mahdessian D, Geladaki A, Ait Blal H et al (2017) A subcellular map of the human proteome. Science 356(6340)

    Google Scholar 

  56. Chakrabarti P, Janin J (2002) Dissecting protein-protein recognition sites. Proteins 47(3):334–343

    Article  CAS  Google Scholar 

  57. Mosca R, Ceol A, Stein A, Olivella R, Aloy P (2014) 3did: a catalog of domain-based interactions of known three-dimensional structure. Nucleic Acids Res 42(Database issue):D374–D379

    Article  CAS  Google Scholar 

  58. Sillitoe I, Cuff A, Dessailly BH, Dawson NL, Furnham N, Lee D, Lees JG et al (2013) New functional families (FunFams) in CATH to improve the mapping of conserved functional sites to 3D structures. Nucleic Acids Res 41(Database issue):D490–D498

    CAS  PubMed  Google Scholar 

  59. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL et al (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44(D1):D279–D285

    Article  CAS  Google Scholar 

  60. Stamenkovic I, Yu Q (2010) Merlin, a “magic” linker between extracellular cues and intracellular signaling pathways that regulate cell motility, proliferation, and survival. Curr Protein Pept Sci 11(6):471–484

    Article  CAS  Google Scholar 

  61. Guerrero PA, Yin W, Camacho L, Marchetti D (2015) Oncogenic role of Merlin/NF2 in glioblastoma. Oncogene 34(20):2621–2630

    Article  CAS  Google Scholar 

  62. Chang CI, Xu BE, Akella R, Cobb MH, Goldsmith EJ (2002) Crystal structures of MAP kinase p38 complexed to the docking sites on its nuclear substrate MEF2A and activator MKK3b. Mol Cell 9(6):1241–1249

    Article  CAS  Google Scholar 

  63. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A et al (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499(7457):214–218

    Article  CAS  Google Scholar 

  64. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J et al (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463(7283):899–905

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The results published here are in part based upon data generated by TCGA Research Network: http://cancergenome.nih.gov. This research was supported in part by the National Cancer Institute of the NIH (Cancer Target Discovery and Development Network grants U01CA168449 and U01CA217875), Emory University Research Committee grant, Winship Cancer Institute (NIH 5P30CA138292), and Fadlo R. Khuri Translational Research Award of the Winship Cancer Institute, Emory University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey A. Ivanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ivanov, A.A. (2020). Explore Protein–Protein Interactions for Cancer Target Discovery Using the OncoPPi Portal. In: Canzar, S., Ringeling, F. (eds) Protein-Protein Interaction Networks. Methods in Molecular Biology, vol 2074. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9873-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9873-9_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9872-2

  • Online ISBN: 978-1-4939-9873-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics