Skip to main content

Generation of Toxoplasma gondii and Hammondia hammondi Oocysts and Purification of Their Sporozoites for Downstream Manipulation

  • Protocol
  • First Online:
Toxoplasma gondii

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2071))

Abstract

Toxoplasma gondii tachyzoites and bradyzoites are studied extensively in the laboratory due to the ease with which they can be cultured. In contrast, oocysts and the sporozoites within them are more difficult to work with, in that cat infections are required for their generation and isolating sporozoites requires a laborious excystation procedure. More over some parasite species such as Hammondia hammondi are obligately heteroxenous and require passage through a cat for completion of the life cycle. There is no debate that there is great value in studying this important life cycle stage, and we present here a detailed description of the current protocols used in our laboratories to generate and isolate T. gondii and H. hammondi oocysts, and to excyst and purify the sporozoites within them for use in downstream experimental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weiss LM, Kim K (eds.) (2014) Toxoplasma gondii: the model apicomplexan - perspectives and methods, 2nd edn. Elsevier/AP, Amsterdam

    Google Scholar 

  2. Behnke MS, Khan A, Sibley LD (2015) Genetic mapping reveals that sinefungin resistance in Toxoplasma gondii is controlled by a putative amino acid transporter locus that can be used as a negative selectable marker. Eukaryot Cell 14(2):140–148. https://doi.org/10.1128/EC.00229-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Behnke MS, Khan A, Wootton JC, Dubey JP, Tang K, Sibley LD (2011) Virulence differences in Toxoplasma mediated by amplification of a family of polymorphic pseudokinases. Proc Natl Acad Sci U S A 108(23):9631–9636. https://doi.org/10.1073/pnas.1015338108

    Article  PubMed  PubMed Central  Google Scholar 

  4. Taylor S, Barragan A, Su C, Fux B, Fentress SJ, Tang K, Beatty WL, Hajj HE, Jerome M, Behnke MS, White M, Wootton JC, Sibley LD (2006) A secreted serine-threonine kinase determines virulence in the eukaryotic pathogen Toxoplasma gondii. Science 314(5806):1776–1780

    Article  CAS  PubMed  Google Scholar 

  5. Pernas L, Adomako-Ankomah Y, Shastri AJ, Ewald SE, Treeck M, Boyle JP, Boothroyd JC (2014) Toxoplasma effector MAF1 mediates recruitment of host mitochondria and impacts the host response. PLoS Biol 12(4):e1001845. https://doi.org/10.1371/journal.pbio.1001845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Reese ML, Zeiner GM, Saeij JP, Boothroyd JC, Boyle JP (2011) Polymorphic family of injected pseudokinases is paramount in Toxoplasma virulence. Proc Natl Acad Sci U S A 108(23):9625–9630. https://doi.org/10.1073/pnas.1015980108

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bontell IL, Hall N, Ashelford KE, Dubey JP, Boyle JP, Lindh J, Smith JE (2009) Whole genome sequencing of a natural recombinant Toxoplasma gondii strain reveals chromosome sorting and local allelic variants. Genome Biol 10(5):R53

    Article  PubMed  PubMed Central  Google Scholar 

  8. Boyle JP, Saeij JP, Harada SY, Ajioka JW, Boothroyd JC (2008) Expression quantitative trait locus mapping of Toxoplasma genes reveals multiple mechanisms for strain-specific differences in gene expression. Eukaryot Cell 7(8):1403–1414. https://doi.org/10.1128/EC.00073-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Saeij JP, Coller S, Boyle JP, Jerome ME, White MW, Boothroyd JC (2007) Toxoplasma co-opts host gene expression by injection of a polymorphic kinase homologue. Nature 445(7125):324–327. https://doi.org/10.1038/nature05395

    Article  CAS  PubMed  Google Scholar 

  10. Saeij JP, Boyle JP, Coller S, Taylor S, Sibley LD, Brooke-Powell ET, Ajioka JW, Boothroyd JC (2006) Polymorphic secreted kinases are key virulence factors in toxoplasmosis. Science 314(5806):1780–1783. https://doi.org/10.1126/science.1133690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rosowski EE, Lu D, Julien L, Rodda L, Gaiser RA, Jensen KD, Saeij JP (2011) Strain-specific activation of the NF-kappaB pathway by GRA15, a novel Toxoplasma gondii dense granule protein. J Exp Med 208(1):195–212. https://doi.org/10.1084/jem.20100717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Riahi H, Darde ML, Bouteille B, Leboutet MJ, Pestre-Alexandre M (1995) Hammondia hammondi cysts in cell cultures. J Parasitol 81(5):821–824

    Article  CAS  PubMed  Google Scholar 

  13. Dubey JP, Sreekumar C (2003) Redescription of Hammondia hammondi and its differentiation from Toxoplasma gondii. Int J Parasitol 33(13):1437–1453

    Article  CAS  PubMed  Google Scholar 

  14. Heydorn AO, Mehlhorn H (2001) Further remarks on Hammondia hammondi and the taxonomic importance of obligate heteroxeny. Parasitol Res 87(7):573–577

    Article  CAS  PubMed  Google Scholar 

  15. Walzer KA, Wier GM, Dam RA, Srinivasan AR, Borges AL, English ED, Herrmann DC, Schares G, Dubey JP, Boyle JP (2014) Hammondia hammondi harbors functional orthologs of the host-modulating effectors GRA15 and ROP16 but is distinguished from Toxoplasma gondii by a unique transcriptional profile. Eukaryot Cell 13(12):1507–1518. https://doi.org/10.1128/EC.00215-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Walzer KA, Adomako-Ankomah Y, Dam RA, Herrmann DC, Schares G, Dubey JP, Boyle JP (2013) Hammondia hammondi, an avirulent relative of Toxoplasma gondii, has functional orthologs of known T. gondii virulence genes. Proc Natl Acad Sci U S A 110(18):7446–7451. https://doi.org/10.1073/pnas.1304322110

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sokol SL, Primack AS, Nair SC, Wong ZS, Tembo M, Verma SK, Cerqueira-Cezar CK, Dubey JP, Boyle JP (2018) Dissection of the in vitro developmental program of Hammondia hammondi reveals a link between stress sensitivity and life cycle flexibility in Toxoplasma gondii. eLife 7. https://doi.org/10.7554/eLife.36491

  18. Dubey JP, Brake RJ, Murrell KD, Fayer R (1986) Effect of irradiation on the viability of Toxoplasma gondii cysts in tissues of mice and pigs. Am J Vet Res 47(3):518–522

    CAS  PubMed  Google Scholar 

  19. Dubey JP, Kotula AW, Sharar A, Andrews CD, Lindsay DS (1990) Effect of high temperature on infectivity of Toxoplasma gondii tissue cysts in pork. J Parasitol 76(2):201–204

    Article  CAS  PubMed  Google Scholar 

  20. Kotula AW, Dubey JP, Sharar AK, Andrews CD, Shen SK, Lindsay DS (1991) Effect of freezing on infectivity of Toxoplasma gondii tissue cysts in pork. J Food Protection 54:687–690

    Article  CAS  Google Scholar 

  21. Hill DE, Benedetto SM, Coss C, McCrary JL, Fournet VM, Dubey JP (2006) Effects of time and temperature on the viability of Toxoplasma gondii tissue cysts in enhanced pork loin. J Food Prot 69(8):1961–1965

    Article  CAS  PubMed  Google Scholar 

  22. Boyer K, Hill D, Mui E, Wroblewski K, Karrison T, Dubey JP, Sautter M, Noble AG, Withers S, Swisher C, Heydemann P, Hosten T, Babiarz J, Lee D, Meier P, McLeod R (2011) Unrecognized ingestion of Toxoplasma gondii oocysts leads to congenital toxoplasmosis and causes epidemics in North America. Clin Infect Dis 53(11):1081–1089. https://doi.org/10.1093/cid/cir667

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hoffmann S, Batz MB, Morris JG Jr (2012) Annual cost of illness and quality-adjusted life year losses in the United States due to 14 foodborne pathogens. J Food Prot 75(7):1292–1302. https://doi.org/10.4315/0362-028X.JFP-11-417

    Article  PubMed  Google Scholar 

  24. Dubey JP (2010) Toxoplasmosis of animals and humans, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  25. Radke JR, Gubbels MJ, Jerome ME, Radke JB, Striepen B, White MW (2004) Identification of a sporozoite-specific member of the Toxoplasma SAG superfamily via genetic complementation. Mol Microbiol 52(1):93–105

    Article  CAS  PubMed  Google Scholar 

  26. Jerome ME, Radke JR, Bohne W, Roos DS, White MW, Veterinary Molecular Biology MSUBMUSA (1998) Toxoplasma gondii bradyzoites form spontaneously during sporozoite-initiated development. Infect Immun 66(10):4838–4844

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tilley M, Fichera ME, Jerome ME, Roos DS, White MW (1997) Toxoplasma gondii sporozoites form a transient parasitophorous vacuole that is impermeable and contains only a subset of dense-granule proteins. Infect Immun 65(11):4598–4605

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Dubey JP (1976) Reshedding of Toxoplasma oocysts by chronically infected cats. Nature 262(5565):213–214

    Article  CAS  PubMed  Google Scholar 

  29. Malmasi A, Mosallanejad B, Mohebali M, Sharifian Fard M, Taheri M (2009) Prevention of shedding and re-shedding of Toxoplasma gondii oocysts in experimentally infected cats treated with oral clindamycin: a preliminary study. Zoonoses Public Health 56(2):102–104. https://doi.org/10.1111/j.1863-2378.2008.01174.x

    Article  CAS  PubMed  Google Scholar 

  30. Dubey JP (1995) Duration of immunity to shedding of Toxoplasma gondii oocysts by cats. J Parasitol 81(3):410–415

    Article  CAS  PubMed  Google Scholar 

  31. Zulpo DL, Sammi AS, Dos Santos JR, Sasse JP, Martins TA, Minutti AF, Cardim ST, de Barros LD, Navarro IT, Garcia JL (2018) Toxoplasma gondii: a study of oocyst re-shedding in domestic cats. Vet Parasitol 249:17–20. https://doi.org/10.1016/j.vetpar.2017.10.021

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jon P. Boyle or Jitender P. Dubey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sokol, S.L., Wong, Z.S., Boyle, J.P., Dubey, J.P. (2020). Generation of Toxoplasma gondii and Hammondia hammondi Oocysts and Purification of Their Sporozoites for Downstream Manipulation. In: Tonkin, C. (eds) Toxoplasma gondii. Methods in Molecular Biology, vol 2071. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9857-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9857-9_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9856-2

  • Online ISBN: 978-1-4939-9857-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics