Skip to main content

Isolation of Antigen-Specific VHH Single-Domain Antibodies by Combining Animal Immunization with Yeast Surface Display

  • Protocol
  • First Online:
Genotype Phenotype Coupling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2070))

Abstract

In addition to conventional hetero-tetrameric antibodies, the adaptive immune repertoire of camelids comprises the so-called heavy chain-only antibodies devoid of light chains. Consequently, antigen binding is mediated solely by the variable domain of the heavy chain, referred to as VHH. In recent years, these single-domain moieties emerged as promising tools for biotechnological and biomedical applications. In this chapter, we describe the generation of VHH antibody yeast surface display libraries from immunized Alpacas and Lamas as well as the facile isolation of antigen-specific molecules in a convenient fluorescence-activated cell sorting (FACS)-based selection process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamers-Casterman C, Atarhouch T, Muyldermans S et al (1993) Naturally occurring antibodies devoid of light chains. Nature 363:446–448

    Article  CAS  Google Scholar 

  2. Zielonka S, Empting M, Grzeschik J et al (2015) Structural insights and biomedical potential of IgNAR scaffolds from sharks. MAbs 7:15–25

    Article  CAS  Google Scholar 

  3. Arezumand R, Alibakhshi A, Ranjbari J et al (2017) Nanobodies as novel agents for targeting angiogenesis in solid cancers. Front Immunol 8:1746

    Article  Google Scholar 

  4. Könning D, Zielonka S, Grzeschik J et al (2017) Camelid and shark single domain antibodies: structural features and therapeutic potential. Curr Opin Struct Biol 45:10–16

    Article  Google Scholar 

  5. Wesolowski J, Alzogaray V, Reyelt J et al (2009) Single domain antibodies: promising experimental and therapeutic tools in infection and immunity. Med Microbiol Immunol 198:157–174

    Article  CAS  Google Scholar 

  6. Jähnichen S, Blanchetot C, Maussang D et al (2010) CXCR4 nanobodies (VHH-based single variable domains) potently inhibit chemotaxis and HIV-1 replication and mobilize stem cells. Proc Natl Acad Sci U S A 107:20565–20570

    Article  Google Scholar 

  7. Maussang D, Mujić-Delić A, Descamps FJ et al (2013) Llama-derived single variable domains (nanobodies) directed against chemokine receptor CXCR7 reduce head and neck cancer cell growth in vivo. J Biol Chem 288:29562–29572

    Article  CAS  Google Scholar 

  8. Nguyen VK, Hamers R, Wyns L et al (2000) Camel heavy-chain antibodies: diverse germline VHH and specific mechanisms enlarge the antigen-binding repertoire. EMBO J 19:921–930

    Article  CAS  Google Scholar 

  9. Muyldermans S, Smider VV (2016) Distinct antibody species: structural differences creating therapeutic opportunities. Curr Opin Immunol 40:7–13

    Article  CAS  Google Scholar 

  10. Krah S, Schröter C, Zielonka S et al (2016) Single-domain antibodies for biomedical applications. Immunopharmacol Immunotoxicol 38:21–28

    Article  CAS  Google Scholar 

  11. Conrath KE, Wernery U, Muyldermans S et al (2003) Emergence and evolution of functional heavy-chain antibodies in Camelidae. Dev Comp Immunol 27:87–103

    Article  CAS  Google Scholar 

  12. Vincke C, Loris R, Saerens D et al (2009) General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J Biol Chem 284:3273–3284

    Article  CAS  Google Scholar 

  13. Tijink BM, Laeremans T, Budde M et al (2008) Improved tumor targeting of anti-epidermal growth factor receptor Nanobodies through albumin binding: taking advantage of modular Nanobody technology. Mol Cancer Ther 7:2288–2297

    Article  CAS  Google Scholar 

  14. Helma J, Cardoso MC, Muyldermans S et al (2015) Nanobodies and recombinant binders in cell biology. J Cell Biol 209:633–644

    Article  CAS  Google Scholar 

  15. Alvarez-Cienfuegos A, Nuñez-Prado N, Compte M et al (2016) Intramolecular trimerization, a novel strategy for making multispecific antibodies with controlled orientation of the antigen binding domains. Sci Rep 6:28643

    Article  CAS  Google Scholar 

  16. Desmyter A, Spinelli S, Boutton C et al (2017) Neutralization of human interleukin 23 by multivalent nanobodies explained by the structure of cytokine–nanobody complex. Front Immunol 8:884

    Article  Google Scholar 

  17. Goldman E, Liu J, Bernstein R et al (2009) Ricin detection using phage displayed single domain antibodies. Sensors 9:542–555

    Article  CAS  Google Scholar 

  18. Yan J, Li G, Hu Y et al (2014) Construction of a synthetic phage-displayed Nanobody library with CDR3 regions randomized by trinucleotide cassettes for diagnostic applications. J Transl Med 12:343

    Article  Google Scholar 

  19. Bencurova E, Pulzova L, Flachbartova Z et al (2015) A rapid and simple pipeline for synthesis of mRNA–ribosome–V H H complexes used in single-domain antibody ribosome display. Mol BioSyst 11:1515–1524

    Article  CAS  Google Scholar 

  20. Romao E, Morales-Yanez F, Hu Y et al (2016) Identification of useful nanobodies by phage display of immune single domain libraries derived from camelid heavy chain antibodies. Curr Pharm Des 22:6500–6518

    Article  CAS  Google Scholar 

  21. Cavallari M (2017) Rapid and direct VHH and target identification by staphylococcal surface display libraries. Int J Mol Sci 18:1507

    Article  Google Scholar 

  22. Eden T, Menzel S, Wesolowski J et al (2018) A cDNA immunization strategy to generate nanobodies against membrane proteins in native conformation. Front Immunol 8:1989

    Article  Google Scholar 

  23. Wu Y, Jiang S, Ying T (2017) Single-domain antibodies as therapeutics against human viral diseases. Front Immunol 8:1802

    Article  Google Scholar 

  24. Pardon E, Laeremans T, Triest S et al (2014) A general protocol for the generation of Nanobodies for structural biology. Nat Protoc 9:674–693

    Article  CAS  Google Scholar 

  25. McMahon C, Baier AS, Pascolutti R et al (2018) Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nat Struct Mol Biol 25:289–296

    Article  CAS  Google Scholar 

  26. Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15:553–557

    Article  CAS  Google Scholar 

  27. Lu Z-J (2012) Frontier of therapeutic antibody discovery: The challenges and how to face them. World J Biol Chem 3:187

    Article  Google Scholar 

  28. Doerner A, Rhiel L, Zielonka S et al (2014) Therapeutic antibody engineering by high efficiency cell screening. FEBS Lett 588:278–287

    Article  CAS  Google Scholar 

  29. Zielonka S, Weber N, Becker S et al (2014) Shark Attack: high affinity binding proteins derived from shark vNAR domains by stepwise in vitro affinity maturation. J Biotechnol 191:236–245

    Article  CAS  Google Scholar 

  30. Zielonka S, Empting M, Könning D et al (2015) The shark strikes twice: hypervariable loop 2 of shark IgNAR antibody variable domains and its potential to function as an autonomous paratope. Mar Biotechnol (NY) 17:386–392

    Article  CAS  Google Scholar 

  31. Grzeschik J, Könning D, Hinz SC et al (2018) Generation of semi-synthetic shark IgNAR single-domain antibody libraries. Methods Mol Biol 1701:147–167

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We like to thank Preclinics GmbH for collaborating on this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Zielonka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Roth, L. et al. (2020). Isolation of Antigen-Specific VHH Single-Domain Antibodies by Combining Animal Immunization with Yeast Surface Display. In: Zielonka, S., Krah, S. (eds) Genotype Phenotype Coupling. Methods in Molecular Biology, vol 2070. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9853-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9853-1_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9852-4

  • Online ISBN: 978-1-4939-9853-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics