Skip to main content

Genetic Manipulation of MRSA Using CRISPR/Cas9 Technology

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2069))

Abstract

The clustered regularly interspersed short palindromic repeat (CRISPR)/Cas9 system has emerged as an efficient genome engineering method attributed to its high efficiency and versatility. By generating a lethal double-strand DNA break in the target genome, the CRISPR/Cas9 system is capable of selecting the separated crossover events occurring in the traditional genetic manipulation methods in one step, therefore enabling rapid and efficient genome editing in Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA). By engineering the fusion of a cytidine deaminase APOBEC1 and a Cas9 nickase, a base editor was further developed as a highly efficient gene inactivation and point mutation tool in S. aureus. Here we describe a detailed protocol for CRISPR/Cas9-based genome editing in S. aureus, including genome modification and base editing. This protocol outlines in detail the design of primers, the construction and transformation of editing plasmids, as well as the verification of sequence-specific CRISPR/Cas9-mediated mutagenesis in S. aureus.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170

    Article  CAS  Google Scholar 

  2. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  Google Scholar 

  3. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD et al (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229

    Article  CAS  Google Scholar 

  4. Bassett AR, Tibbit C, Ponting CP, Liu JL (2013) Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep 4:220–228

    Article  CAS  Google Scholar 

  5. DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41:4336–4343

    Article  CAS  Google Scholar 

  6. Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233–239

    Article  CAS  Google Scholar 

  7. Chen W, Zhang Y, Yeo WS, Bae T, Ji Q (2017) Rapid and efficient genome editing in Staphylococcus aureus by using an engineered CRISPR/Cas9 system. J Am Chem Soc 139:3790–3795

    Article  CAS  Google Scholar 

  8. Gu T, Zhao S, Pi Y, Chen W, Chen C, Liu Q et al (2018) Highly efficient base editing in Staphylococcus aureus using an engineered CRISPR RNA-guided cytidine deaminase. Chem Sci 9:3248–3253

    Article  CAS  Google Scholar 

  9. Chen W, Zhang Y, Zhang Y, Pi Y, Gu T, Song L et al (2018) CRISPR/Cas9-based genome editing in Pseudomonas aeruginosa and cytidine deaminase-mediated base editing in Pseudomonas species. iScience 6:222–231

    Article  CAS  Google Scholar 

  10. Wang Y, Wang S, Chen W, Song L, Zhang Y, Shen Z et al (2018) CRISPR-Cas9 and CRISPR-assisted cytidine deaminase enable precise and efficient genome editing in Klebsiella pneumoniae. Appl Environ Microbiol 84: e01834-18

    Google Scholar 

  11. Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331–338

    Article  CAS  Google Scholar 

  12. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  Google Scholar 

  13. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–424

    Article  CAS  Google Scholar 

  14. Xie S, Shen B, Zhang C, Huang X, Zhang Y (2014) sgRNAcas9: a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PLoS One 9:e100448

    Article  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the National Natural Science Foundation of China (91753127 and 31700123) to Q.J. and the Shanghai Sailing Program (18YF1416500) to W.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanjiang Ji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chen, W., Ji, Q. (2020). Genetic Manipulation of MRSA Using CRISPR/Cas9 Technology. In: Ji, Y. (eds) Methicillin-Resistant Staphylococcus Aureus (MRSA) Protocols. Methods in Molecular Biology, vol 2069. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9849-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9849-4_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9848-7

  • Online ISBN: 978-1-4939-9849-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics