Skip to main content

Exploring Toxin Evolution: Venom Protein Transcript Sequencing and Transcriptome-Guided High-Throughput Proteomics

  • Protocol
  • First Online:
Snake and Spider Toxins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2068))

Abstract

Studying animal toxin evolution requires sequences of these proteins and peptides, and transcript sequences allow for the construction of cladograms and evaluation of selection pressures from nonsynonymous and synonymous nucleotide mutation ratios. In addition, these translated sequences can be useful as custom databases for peptide identifications within venoms and for better proteomic quantification. Obtaining these transcripts is achieved by sequencing cDNA originating from venom gland tissue or venom. This chapter provides the methodology for (1) targeted sequencing of transcripts from a single venom protein family (RNA isolation and 3′RACE [rapid amplification of cDNA ends]), (2) generation of a venom gland transcriptome with next-generation sequencing (NGS) technology (de novo transcriptome assembly, toxin transcript identification, quantification, and positive selection analysis), and (3) combined high-throughput proteomics to identify secreted venom components. Transcriptomics has become fundamental for studying toxin evolution, but it creates many challenges for scientists who are unfamiliar with working with RNA, managing large NGS datasets and executing the required programs, particularly considering that there is an overabundance of available software in this field and not all perform optimally for venom gland transcriptome assembly. This chapter provides one pipeline for the integration of both low- and high-throughput transcriptomics with proteomics to characterize venoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mackessy SP (2010) The field of reptile toxinology: snakes, lizards and their venoms. In: Mackessy SP (ed) Handbook of venoms and toxins of reptiles. CRC Press/Taylor & Francis Group, Boca Raton, FL, pp 2–23

    Google Scholar 

  2. Gibbs HL, Rossiter W (2008) Rapid evolution by positive selection and gene gain and loss: PLA2 venom genes in closely related Sistrurus rattlesnakes with divergent diets. J Mol Evol 66(2):151–166

    Article  CAS  PubMed  Google Scholar 

  3. Dowell NL, Giorgianni MW, Kassner VA, Selegue JE, Sanchez EE, Carroll SB (2016) The deep origin and recent loss of venom toxin genes in rattlesnakes. Curr Biol 26(18):2434–2445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Safavi-Hemami H, Lu A, Li Q, Fedosov AE, Biggs J, Corneli PS, Seger J, Yandell M, Olivera BM (2016) Venom insulins of cone snails diversify rapidly and track prey taxa. Mol Biol Evol 33(11):2924–2934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gendreau KL, Haney RA, Schwager EE, Wierschin T, Stanke M, Richards S, Garb JE (2017) House spider genome uncovers evolutionary shifts in the diversity and expression of black widow venom proteins associated with extreme toxicity. BMC Genomics 18:14

    Article  CAS  Google Scholar 

  6. Doley R, Mackessy SP, Kini RM (2009) Role of accelerated segment switch in exons to alter targeting (ASSET) in the molecular evolution of snake venom proteins. BMC Evol Biol 9:146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li M, Fry BG, Kini RM (2005) Putting the brakes on snake venom evolution: the unique molecular evolutionary patterns of Aipysurus eydouxii (Marbled Sea snake) phospholipase A2 toxins. Mol Biol Evol 22(4):934–941

    Article  CAS  PubMed  Google Scholar 

  8. Whittington AC, Mason AJ, Rokyta DR (2018) A single mutation unlocks cascading exaptations in the origin of a potent pitviper neurotoxin. Mol Biol Evol 35(4):887–898

    Article  CAS  PubMed  Google Scholar 

  9. Nei M, Gu X, Sitnikova T (1997) Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc Natl Acad Sci U S A 94(15):7799–7806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Margres MJ, Bigelow AT, Lemmon EM, Lemmon AR, Rokyta DR (2017) Selection to increase expression, not sequence diversity, precedes gene family origin and expansion in rattlesnake venom. Genetics 206(3):1569–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Calvete JJ, Sanz L, Angulo Y, Lomonte B, Gutierrez JM (2009) Venoms, venomics, antivenomics. FEBS Lett 583(11):1736–1743

    Article  CAS  PubMed  Google Scholar 

  12. Calvete JJ (2014) Next-generation snake venomics: protein-locus resolution through venom proteome decomplexation. Expert Rev Proteomics 11(3):315–329

    Article  CAS  PubMed  Google Scholar 

  13. Aird SD, Aggarwal S, Villar-Briones A, Tin MM, Terada K, Mikheyev AS (2015) Snake venoms are integrated systems, but abundant venom proteins evolve more rapidly. BMC Genomics 16:647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pla D, Petras D, Saviola AJ, Modahl CM, Sanz L, Perez A, Juarez E, Frietze S, Dorrestein PC, Mackessy SP, Calvete JJ (2017) Transcriptomics-guided bottom-up and top-down venomics of neonate and adult specimens of the arboreal rear-fanged Brown Treesnake, Boiga irregularis, from Guam. J Proteome 174:71–84

    Article  CAS  Google Scholar 

  15. Modahl CM, Frietze S, Mackessy SP (2018) Transcriptome-facilitated proteomic characterization of rear-fanged snake venoms reveal abundant metalloproteinases with enhanced activity. J Proteome 187:223–234

    Article  CAS  Google Scholar 

  16. Kaas Q, Craik DJ (2015) Bioinformatics-aided venomics. Toxins 7(6):2159–2187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Andrews S, FastQC. A quality control tool for high throughput sequence data. http://www.bioinformaticsbabrahamacuk/projects/fastqc/

  19. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate Illumina paired-end reAd mergeR. Bioinformatics 30(5):614–620

    Article  CAS  PubMed  Google Scholar 

  21. Magoc T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rokyta DR, Lemmon AR, Margres MJ, Aronow K (2012) The venom-gland transcriptome of the eastern diamondback rattlesnake (Crotalus adamanteus). BMC Genomics 13:312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Archer J, Whiteley G, Casewell NR, Harrison RA, Wagstaff SC (2014) VTBuilder: a tool for the assembly of multi isoform transcriptomes. BMC Bioinformatics 15:389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gilbert D. Gene-omes built from mRNA seq not genome DNA [version 1; not peer reviewed]. F1000 Research. 5:1695 (poster) (https://doi.org/10.7490/f1000research.1112594.1)

  25. Slater GS, Birney E (2005) Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28(23):3150–3152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60

    Article  CAS  PubMed  Google Scholar 

  29. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8(10):785–786

    Article  CAS  PubMed  Google Scholar 

  30. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580

    Article  CAS  PubMed  Google Scholar 

  31. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9(4):357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Larsson A (2014) AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30(22):3276–3278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27(2):221–224

    Article  CAS  PubMed  Google Scholar 

  35. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ (2009) Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25(9):1189–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586–1591

    Article  CAS  PubMed  Google Scholar 

  38. Delport W, Poon AFY, Frost SDW, Kosakovsky Pond SL (2010) Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 26(19):2455–2457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Searle BC (2010) Scaffold: a bioinformatic tool for validating MS/MS-based proteomic studies. Proteomics 10(6):1265–1269

    Article  CAS  PubMed  Google Scholar 

  40. Zhang J, Xin L, Shan B, Chen W, Xie M, Yuen D, Zhang W, Zhang Z, Lajoie GA, Ma B (2012) PEAKS DB: de novo sequencing assisted database search for sensitive and accurate peptide identification. Mol Cell Proteomics 11(4):M111.010587

    Article  CAS  PubMed  Google Scholar 

  41. Vaudel M, Barsnes H, Berven FS, Sickmann A, Martens L (2011) SearchGUI: an open-source graphical user interface for simultaneous OMSSA and X!Tandem searches. Proteomics 11(5):996–999

    Article  CAS  PubMed  Google Scholar 

  42. Modahl CM, Mackessy SP (2016) Full-length venom protein cDNA sequences from venom-derived mRNA: exploring compositional variation and adaptive multigene evolution. PLoS Negl Trop Dis 10(6):e0004587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotech 26(10):1135–1145

    Article  CAS  Google Scholar 

  44. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17(6):333–351

    Article  CAS  PubMed  Google Scholar 

  45. Parkinson J, Blaxter M (2009) Expressed sequence tags: an overview. Methods Mol Biol 533:1–12

    Article  CAS  PubMed  Google Scholar 

  46. Rotenberg D, Bamberger ES, Kochva E (1971) Studies on ribonucleic acid synthesis in the venom glands of Vipera palaestinae (Ophidia, Reptilia). J Biochem 121:609–612

    Article  CAS  Google Scholar 

  47. Hargreaves AD, Swain MT, Hegarty MJ, Logan DW, Mulley JF (2014) Restriction and recruitment – gene duplication and the origin and evolution of snake venom toxins. Genome Biol Evol 8:2088–2095

    Article  CAS  Google Scholar 

  48. Reyes-Velasco J, Card DC, Andrew AL, Shaney KJ, Adams RH, Schield DR, Casewell NR, Mackessy SP, Castoe TA (2015) Expression of venom gene homologs in diverse python tissues suggests a new model for the evolution of snake venom. Mol Biol Evol 32(1):173–183

    Article  CAS  PubMed  Google Scholar 

  49. Junqueira-de-Azevedo IL, Bastos CM, Ho PL, Luna MS, Yamanouye N, Casewell NR (2015) Venom-related transcripts from Bothrops jararaca tissues provide novel molecular insights into the production and evolution of snake venom. Mol Biol Evol 32(3):754–766

    Article  CAS  PubMed  Google Scholar 

  50. Hargreaves AD, Mulley JF (2015) Assessing the utility of the Oxford Nanopore MinION for snake venom gland cDNA sequencing. PeerJ 3:e1441

    Article  PubMed  PubMed Central  Google Scholar 

  51. Nakasugi K, Crowhurst R, Bally J, Waterhouse P (2014) Combining transcriptome assemblies from multiple de novo assemblers in the Allo-tetraploid plant Nicotiana benthamiana. PLoS One 9(3):e91776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Macrander J, Broe M, Daly M (2015) Multi-copy venom genes hidden in de novo transcriptome assemblies, a cautionary tale with the snakelocks sea anemone Anemonia sulcata (pennant, 1977). Toxicon 108:184–188

    Article  CAS  PubMed  Google Scholar 

  53. Honaas LA, Wafula EK, Wickett NJ, Der JP, Zhang Y, Edger PP, Altman NS, Pires JC, Leebens-Mack JH, dePamphilis CW (2016) Selecting superior de novo transcriptome assemblies: lessons learned by leveraging the best plant genome. PLoS One 11(1):e0146062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Aird SD, Watanabe Y, Villar-Briones A, Roy MC, Terada K, Mikheyev AS (2013) Quantitative high-throughput profiling of snake venom gland transcriptomes and proteomes (Ovophis okinavensis and Protobothrops flavoviridis). BMC Genomics 14:790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gruenheit N, Deusch O, Esser C, Becker M, Voelckel C, Lockhart P (2012) Cutoffs and k-mers: implications from a transcriptome study in allopolyploid plants. BMC Genomics 13:92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol İ (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19(6):1117–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zerbino DR (2010) Using the velvet de novo assembler for short-read sequencing technologies. Curr Protoc Bioinformatics Chapter 11:Unit 11.5

    PubMed  Google Scholar 

  58. McGivern JJ, Wray KP, Margres MJ, Couch ME, Mackessy SP, Rokyta DR (2014) RNA-seq and high-definition mass spectrometry reveal the complex and divergent venoms of two rear-fanged colubrid snakes. BMC Genomics 15:1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhao QY, Wang Y, Kong YM, Luo D, Li X, Hao P (2011) Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a comparative study. BMC Bioinformatics 12(14):S2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9(9):868–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Smith-Unna R, Boursnell C, Patro R, Hibberd JM, Kelly S (2016) TransRate: reference-free quality assessment of de novo transcriptome assemblies. Genome Res 26(8):1134–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. O'Neil ST, Emrich SJ (2013) Assessing de novo transcriptome assembly metrics for consistency and utility. BMC Genomics 14:465

    Article  PubMed  PubMed Central  Google Scholar 

  63. Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:W29–W37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44(D1):D279–D285

    Article  CAS  PubMed  Google Scholar 

  65. Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, Bateman A, Bernard T, Binns D, Bork P, Burge S, de Castro E, Coggill P, Corbett M, Das U, Daugherty L, Duquenne L, Finn RD, Fraser M, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, McMenamin C, Mi H, Mutowo-Muellenet P, Mulder N, Natale D, Orengo C, Pesseat S, Punta M, Quinn AF, Rivoire C, Sangrador-Vegas A, Selengut JD, Sigrist CJ, Scheremetjew M, Tate J, Thimmajanarthanan M, Thomas PD, Wu CH, Yeats C, Yong SY (2012) InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 40:D306–D312

    Article  CAS  PubMed  Google Scholar 

  66. Rabouille C (2017) Pathways of unconventional protein secretion. Trends Cell Biol 27(3):230–240

    Article  CAS  PubMed  Google Scholar 

  67. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628

    Article  CAS  PubMed  Google Scholar 

  68. Sunagar K, Moran Y (2015) The rise and fall of an evolutionary innovation: contrasting strategies of venom evolution in ancient and young animals. PLoS Genet 11(10):e1005596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sunagar K, Undheim EA, Scheib H, Gren EC, Cochran C, Person CE, Koludarov I, Kelln W, Hayes WK, King GF, Antunes A, Fry BG (2014) Intraspecific venom variation in the medically significant southern Pacific rattlesnake (Crotalus oreganus helleri): biodiscovery, clinical and evolutionary implications. J Proteome 99:68–83

    Article  CAS  Google Scholar 

  70. Rokyta DR, Wray KP, Lemmon AR, Lemmon EM, Caudle BS (2011) A high-throughput venom-gland transcriptome for the eastern diamondback rattlesnake (Crotalus adamanteus) and evidence for pervasive positive selection across toxin classes. Toxicon 57(5):657–671

    Article  CAS  PubMed  Google Scholar 

  71. Aird SD, Arora J, Barua A, Qiu L, Terada K, Mikheyev AS (2017) Population genomic analysis of a pitviper reveals microevolutionary forces underlying venom chemistry. Genome Biol Evol 9(10):2640–2649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sunagar K, Jackson T, Undheim E, Ali S, Antunes A, Fry BG (2013) Three-fingered RAVERs: rapid accumulation of variations in exposed residues of snake venom toxins. Toxins 5(11):2172–2208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nielsen R, Yang Z (1998) Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148(3):929–936

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Yang Z (2000) Maximum likelihood estimation on large phylogenies and analysis of adaptive evolution in human influenza virus a. J Mol Evol 51:423–432

    Article  CAS  PubMed  Google Scholar 

  75. Yang Z, Wong WS, Nielsen R (2005) Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22(4):1107–1118

    Article  CAS  PubMed  Google Scholar 

  76. Zhang J, Nielsen R, Yang Z (2005) Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 22(12):2472–2479

    Article  CAS  PubMed  Google Scholar 

  77. Pond SL, Frost SD, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21(5):676–679

    Article  CAS  PubMed  Google Scholar 

  78. Pond SL, Frost SD (2005) Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21(10):2531–2533

    Article  CAS  PubMed  Google Scholar 

  79. Chapeaurouge A, Silva A, Carvalho P, McCleary RJR, Modahl CM, Perales J, Kini RM, Mackessy SP (2018) Proteomic deep mining the venom of the red-headed krait, Bungarus flaviceps. Toxins 10(9):E373

    Article  CAS  PubMed  Google Scholar 

  80. Mackessy SP (1988) Venom ontogeny in the pacific rattlesnakes Crotalus viridis helleri and C. v. oreganus. Copeia 1:92–101

    Article  Google Scholar 

  81. Saldarriaga MM, Otero R, Núñez V, Toro MF, Dı́az A, Gutiérrez JM (2003) Ontogenetic variability of Bothrops atrox and Bothrops asper snake venoms from Colombia. Toxicon 42(4):405–411

    Article  CAS  PubMed  Google Scholar 

  82. Saviola AJ, Pla D, Sanz L, Castoe TA, Calvete JJ, Mackessy SP (2015) Comparative venomics of the prairie rattlesnake (Crotalus viridis viridis) from Colorado: identification of a novel pattern of ontogenetic changes in venom composition and assessment of the immunoreactivity of the commercial antivenom CroFab(R). J Proteome 121:28–43

    Article  CAS  Google Scholar 

  83. Rokyta DR, Margres MJ, Ward MJ, Sanchez EE (2017) The genetics of venom ontogeny in the eastern diamondback rattlesnake (Crotalus adamanteus). PeerJ 5:e3249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Massey DJ, Calvete JJ, Sánchez EE, Sanz L, Richards K, Curtis R, Boesen K (2012) Venom variability and envenoming severity outcomes of the Crotalus scutulatus scutulatus (Mojave rattlesnake) from Southern Arizona. J Proteome 75(9):2576–2587

    Article  CAS  Google Scholar 

  85. Rokyta DR, Wray KP, Margres MJ (2013) The genesis of an exceptionally lethal venom in the timber rattlesnake (Crotalus horridus) revealed through comparative venom-gland transcriptomics. BMC Genomics 14:394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Margres MJ, Walls R, Suntravat M, Lucena S, Sanchez EE, Rokyta DR (2016) Functional characterizations of venom phenotypes in the eastern diamondback rattlesnake (Crotalus adamanteus) and evidence for expression-driven divergence in toxic activities among populations. Toxicon 119:28–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Aggarwal S, Yadav AK (2016) False discovery rate estimation in proteomics. Methods Mol Biol 1362:119–128

    Article  CAS  PubMed  Google Scholar 

  88. Elias JE, Gygi SP (2010) Target-decoy search strategy for mass spectrometry-based proteomics. Methods Mol Biol 604:55–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Modahl CM, Mrinalini FS, Mackessy SP (2018) Adaptive evolution of distinct prey-specific toxin genes in rear-fanged snake venom. Proc Biol Sci 285(1884):20181003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Neilson KA, Keighley T, Pascovici D, Cooke B, Haynes PA (2013) Label-free quantitative shotgun proteomics using normalized spectral abundance factors. Methods Mol Biol 1002:205–222

    Article  CAS  PubMed  Google Scholar 

  91. Paoletti AC, Parmely TJ, Tomomori-Sato C, Sato S, Zhu D, Conaway RC, Conaway JW, Florens L, Washburn MP (2006) Quantitative proteomic analysis of distinct mammalian mediator complexes using normalized spectral abundance factors. Proc Natl Acad Sci 103(50):18928–18933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rokyta DR, Margres MJ, Calvin K (2015) Post-transcriptional mechanisms contribute little to phenotypic variation in snake venoms. G3 5(11):2375–2382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Fabre B, Lambour T, Bouyssié D, Menneteau T, Monsarrat B, Burlet-Schiltz O, Bousquet-Dubouch M-P (2014) Comparison of label-free quantification methods for the determination of protein complexes subunits stoichiometry. EuPA Open Proteom 4:82–86

    Article  CAS  Google Scholar 

  94. Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, Mann M (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 4(9):1265–1272

    Article  CAS  PubMed  Google Scholar 

  95. Calvete JJ (2013) Snake venomics: from the inventory of toxins to biology. Toxicon 75:44–62

    Article  CAS  PubMed  Google Scholar 

  96. Pahari S, Mackessy SP, Kini RM (2007) The venom gland transcriptome of the Desert Massasauga Rattlesnake (Sistrurus catenatus edwardsii): towards an understanding of venom composition among advanced snakes (Superfamily Colubroidea). BMC Mol Biol 8:115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Casewell NR, Huttley GA, Wuster W (2012) Dynamic evolution of venom proteins in squamate reptiles. Nat Commun 3:1066

    Article  CAS  PubMed  Google Scholar 

  98. Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, Lightfoot S, Menzel W, Granzow M, Ragg T (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7:3–3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen P. Mackessy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Modahl, C.M., Durban, J., Mackessy, S.P. (2020). Exploring Toxin Evolution: Venom Protein Transcript Sequencing and Transcriptome-Guided High-Throughput Proteomics. In: Priel, A. (eds) Snake and Spider Toxins. Methods in Molecular Biology, vol 2068. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9845-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9845-6_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9844-9

  • Online ISBN: 978-1-4939-9845-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics