Skip to main content

Venom Collection from Spiders and Snakes: Voluntary and Involuntary Extractions (“Milking”) and Venom Gland Extractions

  • Protocol
  • First Online:
Book cover Snake and Spider Toxins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2068))

Abstract

Venom collection (often called “milking”) provides the toxic secretions essential for studying animal venoms and/or generating venom products. Methods of venom collection vary widely, falling into three broad categories: voluntary venom extraction (inducing the animal to willingly release its venom), involuntary venom extraction (glandular massage, electrical stimulation, or administration of induction chemicals to promote venom expulsion), and venom gland extraction (surgical aspiration or trituration of homogenized gland tissue). Choice of method requires consideration of animal species, animal welfare, human safety (avoiding envenomation), venom yield and composition desired, and level of toxin purity required. Here, we summarize the materials and methods used to obtain venom by each of these approaches from spiders and snakes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weinstein SA, Smith T, Kardong KV (2009) Reptile venom glands: form, function and future. In: Mackessy SP (ed) Handbook of reptile venoms and toxins. CRC Press, Boca Raton, pp 65–94

    Google Scholar 

  2. Vonk FJ, Admiraal JF, Jackson K, Reshef R, de Bakker MA, Vanderschoot K et al (2008) Evolutionary origin and development of snake fangs. Nature 454:630–633

    Article  CAS  PubMed  Google Scholar 

  3. Perret BA (1977) Venom regeneration in tarantula spiders. I. Analysis of venom produced at different time intervals. Comp Biochem Physiol A Mol Integr Physiol 56:607–613

    Article  Google Scholar 

  4. Luna MS, Valente RH, Perales J, Vieira ML, Yamanouye N (2013) Activation of Bothrops jararaca snake venom gland and venom production: a proteome approach. J Proteome 94:460–472

    Article  CAS  Google Scholar 

  5. Cooper AM, Kelln WJ, Hayes WK (2014) Venom regeneration in the centipede Scolopendra polymorpha: evidence for asynchronous venom component synthesis. Zoology 117:398–414

    Article  PubMed  Google Scholar 

  6. Inceoglu B, Lango J, Jing J, Chen L, Doymaz F, Pessah IN et al (2003) One scorpion, two venoms: prevenom of Parabuthus transvaalicus acts as an alternative type of venom with distinct mechanism of action. Proc Natl Acad Sci U S A 100:922–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nisani Z, Hayes WK (2011) Defensive stinging by Parabuthus transvaalicus scorpions: risk assessment and venom metering. Anim Behav 81:627–633

    Article  Google Scholar 

  8. Nisani Z, Boskovic DS, Dunbar SG, Kelln W, Hayes WK (2012) Investigating the chemical profile of regenerated scorpion (Parabuthus transvaalicus) venom in relation to metabolic cost and toxicity. Toxicon 60:315–323

    Article  CAS  PubMed  Google Scholar 

  9. Kristensen C (2005) Comments on the natural expression and artificial extraction of venom gland components from spiders. Toxin Rev 24:257–270

    Article  CAS  Google Scholar 

  10. Morgenstern D, Hamilton B, Sher D, Jones A, Mattius G, Zlotkin E et al (2012) The bio-logic of venom complexity. Toxicon 60:241–242

    Article  CAS  Google Scholar 

  11. Cooper AM, Nelsen DR, Hayes WK (2017) The strategic use of venom by spiders. In: Gopalakrishnakone P, Malhotra A (eds) Evolution of venomous animals and their toxins. Springer Science+Business Media, Dordrecht, pp 145–166

    Chapter  Google Scholar 

  12. Meadows PE Russell FE (1970) Milking of arthropods. Toxicon 8:311–312

    Article  PubMed  Google Scholar 

  13. Glenn JL, Straight RC (1982) The rattlesnakes and their venom yield and lethal toxicity. In: Tu AT (ed) Rattlesnake venoms: their action and treatment. Marcel Dekker, New York, pp 3–119

    Google Scholar 

  14. Hayes WK (2008) The snake venom-metering controversy: levels of analysis, assumptions, and evidence. In: Hayes WK, Beaman KR, Cardwell MD, Bush SP (eds) The biology of rattlesnakes. Loma Linda University Press, Loma Linda, pp 191–220

    Google Scholar 

  15. Nelsen DR, Hayes WK (2014) Poke but don’t pinch: risk assessment and venom metering in the western black widow spider (Latrodectus hesperus). Anim Behav 89:107–114

    Article  Google Scholar 

  16. Rosenberg HI (1992) An improved method for collecting secretion from Duvernoy’s gland of colubrid snakes. Copeia 1992:244–246

    Article  Google Scholar 

  17. di Tada IE, Martori RA, Doucet ME, Abalos JW (1976) Venom yield with different milking procedures. In: Rosenberg P (ed) Toxins: animal, plant and microbial. Pergamon Press, Oxford, pp 3–7

    Google Scholar 

  18. Cooper AM, Fox GA, Nelsen DR, Hayes WK (2014) Variation in venom yield and protein concentration of the centipedes Scolopendra polymorpha and S. subspinipes. Toxicon 82:30–51

    Article  CAS  PubMed  Google Scholar 

  19. Bettini S (1978) Arthropod venoms. Springer, Berlin

    Book  Google Scholar 

  20. Bücherl W, Buckley EE (1971) Venomous animals and their venom. In: Venomous invertebrates, vol 3. Academic Press, Orlando

    Google Scholar 

  21. Hayes WK, Lavín-Murcio P, Kardong KV (1993) Delivery of Duvernoy’s secretion into prey by the brown tree snake, Boiga irregularis (Serpentes: Colubridae). Toxicon 31:881–887

    Article  CAS  PubMed  Google Scholar 

  22. Munekiyo SM, Mackessy SP (1998) Effects of temperature and storage conditions on the electrophoretic, toxic and enzymatic stability of venom components. Comp Biochem Physiol B Biochem Mol Biol 119:119–127

    Article  CAS  PubMed  Google Scholar 

  23. Maier L, Root TM, Seyfarth E-A (1987) Heterogeneity of spider leg muscle: histochemistry and electrophysiology of identified fibers in the claw levator. J Comp Physiol B 157:285–294

    Article  Google Scholar 

  24. Weinstein SA, Kardong KV (1994) Properties of Duvernoy’s secretions from opisthoglyphous and aglyphous colubrid snakes. Toxicon 32:1161–1185

    Article  CAS  PubMed  Google Scholar 

  25. Grothaus RH, Howell DE (1967) A new technique for the recovery of spider venom. J Kansas Entomol Soc 40:37–41

    Google Scholar 

  26. Rocha-e-Silva TA, Sutti R, Hyslop S (2009) Milking and partial characterization of venom from the Brazilian spider Vitalius dubius (Theraphosidae). Toxicon 53:153–161

    Article  CAS  PubMed  Google Scholar 

  27. Garb JE (2014) Extraction of venom and venom gland microdissections from spiders for proteomic and transcriptomic analyses. J Vis Exp 93:e51618. https://doi.org/10.3791/51618

    Article  CAS  Google Scholar 

  28. Besson T, Debayle D, Diochot S, Salinas M, Lingueglia E (2016) Low cost venom extractor based on arduino® board for electrical venom extraction from arthropods and other small animals. Toxicon 118:156–161

    Article  CAS  PubMed  Google Scholar 

  29. Hogan MP (2015) Field venom extractions: saving fingers with tubes, forceps, and nerf bullets. Herpetol Rev 46:339–342

    Google Scholar 

  30. Hardy DL, Greene HW (1999) Surgery on rattlesnakes in the field for implantation of transmitters. Sonoran Herpetol 12:25–27

    Google Scholar 

  31. de Morais-Zani K, Serino-Silva C, da Costa Galizio N, Tasima LJ, Pagotto JF, da Rocha MMT et al (2018) Does the administration of pilocarpine prior to venom milking influence the composition of Micrurus corallinus venom? J Proteome 174:17–27

    Article  Google Scholar 

  32. Mader DR (2005) Reptile medicine and surgery. Elsevier, Amsterdam

    Google Scholar 

  33. McCleary RJ, Heard DJ (2010) Venom extraction from anesthetized Florida cottonmouths, Agkistrodon piscivorus conanti, using a portable nerve stimulator. Toxicon 55:250–255

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William K. Hayes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hayes, W.K., Fox, G.A., Nelsen, D.R. (2020). Venom Collection from Spiders and Snakes: Voluntary and Involuntary Extractions (“Milking”) and Venom Gland Extractions. In: Priel, A. (eds) Snake and Spider Toxins. Methods in Molecular Biology, vol 2068. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9845-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9845-6_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9844-9

  • Online ISBN: 978-1-4939-9845-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics