Abstract
A transgenic mouse carries within its genome an artificial DNA construct (transgene) that is deliberately introduced by an experimentalist. These animals are widely used to understand gene function and protein function. When addressing the history of transgenic mouse technology, it is apparent that a number of basic science research areas laid the groundwork for success. These include reproductive science, genetics and molecular biology, and micromanipulation and microscopy equipment. From reproductive physiology came applications on how to optimize mouse breeding, how to superovulate mice to produce zygotes for DNA microinjection or preimplantation embryos for combination with embryonic stem (ES) cells, and how to return zygotes and embryos to a pseudopregnant surrogate dam for gestation and birth. From developmental biology, it was learned how to micromanipulate embryos for morula aggregation and blastocyst microinjection and how to establish germline competent ES cells. From genetics came the foundational principles governing the inheritance of genes, the interactions of gene products, and an understanding of the phenotypic consequences of genetic mutations. From molecular biology came a panoply of tools and reagents that are used to clone DNA transgenes, to detect the presence of transgenes, to assess gene expression by measuring transcription, and to detect proteins in cells and tissues. Technical advances in light microscopes, micromanipulators, micropipette pullers, and ancillary equipment made it possible for experimentalists to insert thin glass needles into zygotes or embryos under controlled conditions to inject DNA solutions or ES cells. To fully discuss the breadth of contributions of these numerous scientific disciplines to a comprehensive history of transgenic science is beyond the scope of this work. Examples will be used to illustrate scientific developments central to the foundation of transgenic technology and that are in use today.
Key words
- Transgene
- Transgenic mice
- Superovulation
- Transgenesis
- Micromanipulation
- Transgenic core facility
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Gates WH (1925) The Japanese waltzing mouse, its origin and genetics. Proc Natl Acad Sci U S A 11:651–653
Crow JF (2002) C. C. Little, cancer and inbred mice. Genetics 161:1357–1361
Morse HCIII (ed) (1978) Origins of inbred mice. Academic Press, New York
Silver LM (1995) Mouse genetics: concepts and applications. Oxford University Press, Oxford
Silvers WK (1979) The coat colors of mice: a model for mammalian gene action and interaction. Springer Verlag, Berlin
Russell LB (2013) The mouse house: a brief history of the ORNL mouse-genetics program, 1947–2009. Mutat Res 753(2):69–90. PMID: 23994540
Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171:737–738
Jackson DA, Symons RH, Berg P (1972) Biochemical method for inserting new genetic information into DNA of simian virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc Natl Acad Sci U S A 69:2904–2909
Cobb RE, Ning JC, Zhao H (2014) DNA assembly techniques for next-generation combinatorial biosynthesis of natural products. J Ind Microbiol Biotechnol 41(2):469–477. PMID: 24127070
Hughes RA, Miklos AE, Ellington AD (2011) Gene synthesis: methods and applications. Methods Enzymol 498:277–309
Summers MC (2014) A brief history of the development of the KSOM family of media. Hum Fertil (Camb) 17(Suppl 1):12–16
Zarrow MX, Wilson ED (1961) The influence of age on superovulation in the immature rat and mouse. Endocrinology 69:851–855
Spearow JL (1988a) Major genes control hormone-induced ovulation rate in mice. J Reprod Fertil 82:787–797
Nagy A, Gertsenstein M, Vintersten K, Behringer R (2014) Manipulating the mouse embryo: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
El-Badry HM (1963) Micromanipulators and micromanipulation. Springer Verlag, Vienna
Lin TP (1966) Microinjection of mouse eggs. Science 151:333–337
Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci U S A 77:7380–7384
Aschheim Z (1928) Die schwangerschaftsdiagnose aus dem harn durch nachweis des hypophysenvorderlappenhormons. Klin Wochenschr 7:1404–1411
Cole HH, Hart GH (1930) The potency of blood serum of mares in progressive stages of pregnancy in effecting the sexual maturity of the immature rat. Am J Phys 93:57–68
Evans HM, Gustus EL, Simpson ME (1933) Concentration of the gonadotropic hormone in pregnant mare’s serum. J Exp Med 58:569–574
Runner MN, Gates A (1954) Conception in prepuberal mice following artificially induced ovulation and mating. Nature 174:222–223
Runner MN, Palm J (1953) Transplantation and survival of unfertilized ova of the mouse in relation to postovulatory age. J Exp Zool 134:303–316
Van Blerkom J, Runner MN (1976) The fine structural development of preimplantation mouse parthenotes. J Exp Zool 196:113–124
Wilson ED, Zarrow MX (1962) Comparison of superovulation in the immature mouse and rat. J Reprod Fertil 3:148–158
Gates AH, Bozarth JL (1978) Ovulation in the PMSG-treated immature mouse: effect of dose, age, weight, puberty, season and strain (BALB/c, 129 and C129F1 hybrid). Biol Reprod 18:497–505
Cosby NC, Chou K, Dukelow WR (1989) Embryo production in B6D2-F1 mice using two superovulating regimens. Lab Anim Sci 39:249–250
Taketo M, Schroeder AC, Mobraaten LE, Gunning KB, Hanten G, Fox RR, Roderick TH, Stewart CL, Lilly F, Hansen CT, Overbeek PA (1991) FVB/N: an inbred mouse strain preferable for transgenic analyses. Proc Natl Acad Sci U S A 88(6):2065–2069. PMID: 1848692
Brooke DA, Orsi NM, Ainscough JF, Holwell SE, Markham AF, Coletta PL (2007) Human menopausal and pregnant mare serum gonadotrophins in murine superovulation regimens for transgenic applications. Theriogenology 67:1409–1413
Popova E, Krivokharchenko A, Ganten D, Bader M (2002) Comparison between PMSG- and FSH induced superovulation for the generation of transgenic rats. Mol Reprod Dev 63:177–182
Filipiak WE, Saunders TL (2006) Advances in transgenic rat production. Transgenic Res 15:673–686
Takeo T, Nakagata N (2015) Superovulation using the combined administration of inhibin antiserum and equine chorionic gonadotropin increases the number of ovulated oocytes in C57BL/6 female mice. PLoS One 10:e0128330
Hasegawa A, Mochida K, Inoue H, Noda Y, Endo T, Watanabe G, Ogura A (2016) High-yield superovulation in adult mice by anti-inhibin serum treatment combined with estrous cycle synchronization. Biol Reprod 94:21
Nakagawa Y, Sakuma T, Nishimichi N, Yokosaki Y, Yanaka N, Takeo T, Nakagata N, Yamamoto T (2016) Ultra-superovulation for the CRISPR-Cas9-mediated production of gene-knockout, single-amino-acid-substituted, and floxed mice. Biol Open 5(8):1142–11428
Runner MN (1947) Development of mouse eggs in the anterior chamber of the eye. Anat Rec 98:1–17
Hammond J Jr (1949) Recovery and culture of tubal mouse ova. Nature 163:28–29
Whitten WK (1956) Culture of tubal mouse ova. Nature 177:96
Whitten WK (1957) Culture of tubal ova. Nature 179:1081–1082
Brinster RL (1965) Studies on the development of mouse embryos in vitro. IV. Interaction of energy sources. J Reprod Fertil 10:227–240
Brinster RL, Biggers JD (1965) In-vitro fertilization of mouse ova within the explanted fallopian tube. J Reprod Fertil 10:277–279
Whitten WK, Biggers JD (1968) Complete development in vitro of the pre-implantation stages of the mouse in a simple chemically defined medium. J Reprod Fertil 17:399–401
Chatot CL, Ziomek CA, Bavister BD, Lewis JL, Torres I (1989) An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro. J Reprod Fertil 86:679–688
Chatot CL, Lewis JL, Torres I, Ziomek CA (1990) Development of 1-cell embryos from different strains of mice in CZB medium. Biol Reprod 42:432–440
Erbach GT, Lawitts JA, Papaioannou VE, Biggers JD (1994) Differential growth of the mouse preimplantation embryo in chemically defined media. Biol Reprod 50(5):1027–1033. PMID: 8025158
Biggers JD, McGinnis LK, Raffin M (2000) Amino acids and preimplantation development of the mouse in protein-free potassium simplex optimized medium. Biol Reprod 63:281–293
Quinn P, Barros C, Whittingham DG (1982) Preservation of hamster oocytes to assay the fertilizing capacity of human spermatozoa. J Reprod Fertil 66:161–168
Whittingham DG (1971) Culture of mouse ova. J Reprod Fertil Suppl 14:7–21
Lawitts JA, Biggers JD (1993) Culture of preimplantation embryos. Methods Enzymol 225:153–164
Biggers JD (1998) Reflections on the culture of the preimplantation embryo. Int J Dev Biol 42:879–884
Summers MC, Biggers JD (2003) Chemically defined media and the culture of mammalian preimplantation embryos: historical perspective and current issues. Hum Reprod Update 9:557–582
Heape W (1890) Preliminary note on the transplantation and growth of mammalian ova within a uterine foster mother. Proc Roy Soc London B 48:457–458
Nicholas JS, Rudnick D (1934) The development of rat embryos in tissue culture. Proc Natl Acad Sci U S A 20:656–658
Bittner JJ, Little CC (1937) Transmission of breast and lung cancer in mice. J Hered 28:117–121
McLaren A, Michie D (1956) Studies on the transfer of fertilized mouse eggs to uterine foster-mothers. J Exp Biol 33:394–416
Fekete E, Little CC (1942) Observations on the mammary tumor incidence of mice born from transferred ova. Cancer Res 2:525–530
Tarkowski AK (1959b) Experiments on the transplantation of ova in mice. Acta Theriol 2:251–267
Ueda O, Yorozu K, Kamada N, Jishage K, Kawase Y, Toyoda Y, Suzuki H (2003) Possible expansion of "window of implantation" in pseudopregnant mice: time of implantation of embryos at different stages of development transferred into the same recipient. Biol Reprod 69:1085–1090
Goto Y, Noda Y, Shiotani M, Kishi J, Nonogaki T, Mori T (1993) The fate of embryos transferred into the uterus. J Assist Reprod Genet 10:197–201
Johnson LW, Moffatt RJ, Bartol FF, Pinkert CA (1996) Optimization of embryo transfer protocols for mice. Theriogenology 46:1267–1276
Chin HJ, Wang CK (2001) Utero-tubal transfer of mouse embryos. Genesis 30:77–81
Pease S, Schroeder AC, Schmidt GH (1989) Production of transgenic mice: acupuncture needle-facilitated embryo transfer to oviduct ampulla. Trends Genet 5:293
Zhang Z, Lv X, Wang Y, Chen Y, Zheng R, Sun H, Bian G, Xiao Y, Li Q, Yang Q, Ai J, Duan J, Tan R, Liu Y, Yang Y, Wei Y, Zhou Q (2009) Success of murine embryo transfer increased by a modified transfer pipette. J Reprod Dev 55:94–97
Fielder TJ, Montoliu L (2011) Transgenic production benchmarks. In: Pease S, Saunders TL (eds) Advanced protocols for animal transgenesis: an ISTT manual. Springer-Verlag, Berlin, pp 81–97
Gates AH (1956) Viability and developmental capacity of eggs from immature mice treated with gonadotrophins. Nature 177:754–755
Bronson RA, McLaren A (1970) Transfer to the mouse oviduct of eggs with and without the zona pellucida. J Reprod Fertil 22:129–137
Rülicke T, Haenggli A, Rappold K, Moehrlen U, Stallmach T (2006) No transuterine migration of fertilised ova after unilateral embryo transfer in mice. Reprod Fertil Dev 18:885–891
Beatty RA (1951) Transplantation of mouse eggs. Nature 168:995
Cui L, Zhang Z, Sun F, Duan X, Wang M, Di K, Li X (2014) Transcervical embryo transfer in mice. J Am Assoc Lab Anim Sci 53:228–231
Green M, Bass S, Spear B (2009) A device for the simple and rapid transcervical transfer of mouse embryos eliminates the need for surgery and potential post-operative complications. BioTechniques 47:919–924
Steele KH, Hester JM, Stone BJ, Carrico KM, Spear BT, Fath-Goodin A (2013) Nonsurgical embryo transfer device compared with surgery for embryo transfer in mice. J Am Assoc Lab Anim Sci 52:17–21
Spearow JL (1988b) Characterization of genetic differences in hormone-induced ovulation rate in mice. J Reprod Fertil 82:799–806
Legge M, Sellens MH (1994) Optimization of superovulation in the reproductively mature mouse. J Assist Reprod Genet 11:312–318
Roudebush WE, Duralia DR (1996) Superovulation, fertilization, and in vitro embryo development in BALB/cByJ, BALB/cJ, B6D2F1/J, and CFW mouse strains. Lab Anim Sci 46:239–240
Osman GE, Jacobson DP, Li SW, Hood LE, Liggitt HD, Ladiges WC (1997) SWR: an inbred strain suitable for generating transgenic mice. Lab Anim Sci 47:167–171
Vergara GJ, Irwin MH, Moffatt RJ, Pinkert CA (1997) In vitro fertilization in mice: strain differences in response to superovulation protocols and effect of cumulus cell removal. Theriogenology 47:1245–1252
Auerbach AB, Norinsky R, Ho W, Losos K, Guo Q, Chatterjee S, Joyner AL (2003) Strain-dependent differences in the efficiency of transgenic mouse production. Transgenic Res 12:59–69
Byers SL, Payson SJ, Taft RA (2006) Performance of ten inbred mouse strains following assisted reproductive technologies (ARTs). Theriogenology 65:1716–1726
Luo C, Zuñiga J, Edison E, Palla S, Dong W, Parker-Thornburg J (2011) Superovulation strategies for 6 commonly used mouse strains. J Am Assoc Lab Anim Sci 50:471–478
Mochida K, Hasegawa A, Otaka N, Hama D, Furuya T, Yamaguchi M, Ichikawa E, Ijuin M, Taguma K, Hashimoto M, Takashima R, Kadota M, Hiraiwa N, Mekada K, Yoshiki A, Ogura A (2014) Devising assisted reproductive technologies for wild-derived strains of mice: 37 strains from five subspecies of Mus musculus. PLoS One 9:e114305
Kolbe T, Landsberger A, Manz S, Na E, Urban I, Michel G (2015) Productivity of superovulated C57BL/6J oocyte donors at different ages. Lab Anim (NY) 44:346–349
Brinster RL, Chen HY, Trumbauer ME, Yagle MK, Palmiter RD (1985) Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs. Proc Natl Acad Sci U S A 82:4438–4442
Fielder TJ, Barrios L, Montoliu L (2010) A survey to establish performance standards for the production of transgenic mice. Transgenic Res 19:675–681
Berg P, Mertz JE (2010) Personal reflections on the origins and emergence of recombinant DNA technology. Genetics 184:9–17
Cohen SN (2013) DNA cloning: a personal view after 40 years. Proc Natl Acad Sci U S A 110:15521–15529
Bacchetti S, Graham FL (1977) Transfer of the gene for thymidine kinase to thymidine kinase-deficient human cells by purified herpes simplex viral DNA. Proc Natl Acad Sci U S A 74:1590–1594
Maitland NJ, McDougall JK (1977) Biochemical transformation of mouse cells by fragments of herpes simplex virus DNA. Cell 11:233–241
Wigler M, Silverstein S, Lee LS, Pellicer A, Cheng Y, Axel R (1977) Transfer of purified herpes virus thymidine kinase gene to cultured mouse cells. Cell 11:223–232
Graham FL, van der Eb AJ (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467
Tarkowski AK (1959) Experiments on the development of isolated blastomeres of mouse eggs. Nature 184:1286–1287
Fulton BP, Whittingham DG (1978) Activation of mammalian oocytes by intracellular injection of calcium. Nature 273:149–151
Wilson IB, Bolton E, Cuttler RH (1972) Preimplantation differentiation in the mouse egg as revealed by microinjection of vital markers. J Embryol Exp Morphol 27:467–469
Brinster RL, Chen HY, Trumbauer ME, Avarbock MR (1980) Translation of globin messenger RNA by the mouse ovum. Nature 283:499–501
Folger KR, Wong EA, Wahl G, Capecchi MR (1982) Patterns of integration of DNA microinjected into cultured mammalian cells: evidence for homologous recombination between injected plasmid DNA molecules. Mol Cell Biol 2:1372–1387
McFarlane M, Wilson JB (1996) A model for the mechanism of precise integration of a microinjected transgene. Transgenic Res 5:171–177
Smith K (2001) Theoretical mechanisms in targeted and random integration of transgene DNA. Reprod Nutr Dev 41:465–485
Nakanishi T, Kuroiwa A, Yamada S, Isotani A, Yamashita A, Tairaka A, Hayashi T, Takagi T, Ikawa M, Matsuda Y, Okabe M (2002) FISH analysis of 142 EGFP transgene integration sites into the mouse genome. Genomics 80:564–557
Le Saux A, Houdebine LM, Jolivet G (2010) Chromosome integration of BAC (bacterial artificial chromosome): evidence of multiple rearrangements. Transgenic Res 19:923–931
Chiang C, Jacobsen JC, Ernst C, Hanscom C, Heilbut A, Blumenthal I, Mills RE, Kirby A, Lindgren AM, Rudiger SR, McLaughlan CJ, Bawden CS, Reid SJ, Faull RL, Snell RG, Hall IM, Shen Y, Ohsumi TK, Borowsky ML, Daly MJ, Lee C, Morton CC, MacDonald ME, Gusella JF, Talkowski ME (2012) Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration. Nat Genet 44:390–397
Zhang R, Yin Y, Zhang Y, Li K, Zhu H, Gong Q, Wang J, Hu X, Li N (2012) Molecular characterization of transgene integration by next-generation sequencing in transgenic cattle. PLoS One 7:e50348
Dubose AJ, Lichtenstein ST, Narisu N, Bonnycastle LL, Swift AJ, Chines PS, Collins FS (2013) Use of microarray hybrid capture and next-generation sequencing to identify the anatomy of a transgene. Nucleic Acids Res 41:e70
Srivastava A, Philip VM, Greenstein I, Rowe LB, Barter M, Lutz C, Reinholdt LG (2014) Discovery of transgene insertion sites by high throughput sequencing of mate pair libraries. BMC Genomics 15:367
Smith DJ, Zhu Y, Zhang J, Cheng JF, Rubin EM (1995) Construction of a panel of transgenic mice containing a contiguous 2-Mb set of YAC/P1 clones from human chromosome 21q22.2. Genomics 27:425–434
Deal KK, Cantrell VA, Chandler RL, Saunders TL, Mortlock DP, Southard-Smith EM (2006) Distant regulatory elements in a Sox10-betaGEO BAC transgene are required for expression of Sox10 in the enteric nervous system and other neural crest-derived tissues. Dev Dyn 235:1413–1432
Meisler MH (1992) Insertional mutation of ‘classical’ and novel genes in transgenic mice. Trends Genet 8:341–344
Rijkers T, Peetz A, Rüther U (1994) Insertional mutagenesis in transgenic mice. Transgenic Res 3:203–215
Smithies O (2001) Forty years with homologous recombination. Nat Med 7:1083–1086
Evans M (2011) Discovering pluripotency: 30 years of mouse embryonic stem cells. Nat Rev Mol Cell Biol 12:680–686
Capecchi MR (2005) Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet 6:507–512
Bradley A, Evans M, Kaufman MH, Robertson E (1984) Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309:255–256
Doetschman T, Gregg RG, Maeda N, Hooper ML, Melton DW, Thompson S, Smithies O (1987) Targeted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330:576–578
Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51:503–512
Koller BH, Hagemann LJ, Doetschman T, Hagaman JR, Huang S, Williams PJ, First NL, Maeda N, Smithies O (1989) Germ-line transmission of a planned alteration made in a hypoxanthine phosphoribosyltransferase gene by homologous recombination in embryonic stem cells. Proc Natl Acad Sci U S A 86:8927–8931
Schwartzberg PL, Goff SP, Robertson EJ (1989) Germ-line transmission of a c-abl mutation produced by targeted gene disruption in ES cells. Science 246:799–803
Mansour SL, Thomas KR, Capecchi MR (1988) Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336:348–352
Adra CN, Boer PH, McBurney MW (1987) Cloning and expression of the mouse pgk-1 gene and the nucleotide sequence of its promoter. Gene 60:65–74
Tybulewicz VL, Crawford CE, Jackson PK, Bronson RT, Mulligan RC (1991) Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 65:1153–1163
Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (2011) A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474:337–342
Yagi T, Ikawa Y, Yoshida K, Shigetani Y, Takeda N, Mabuchi I, Yamamoto T, Aizawa S (1990) Homologous recombination at c-fyn locus of mouse embryonic stem cells with use of diphtheria toxin A-fragment gene in negative selection. Proc Natl Acad Sci U S A 87:9918–9922
te Riele H, Maandag ER, Berns A (1992) Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. Proc Natl Acad Sci U S A 89:5128–5132
Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci U S A 90:8424–8428
Gardner RL (1968) The relationship between cell lineage and differentiation in the early mouse embryo. Results Probl Cell Differ 9:205–241
Moustafa LA, Brinster RL (1972) The fate of transplanted cells in mouse blastocysts in vitro. J Exp Zool 181:181–191
Babinet C (1980) A simplified method for mouse blastocyst injection. Exp Cell Res 130:15–19
Poueymirou WT, Auerbach W, Frendewey D, Hickey JF, Escaravage JM, Esau L, Doré AT, Stevens S, Adams NC, Dominguez MG, Gale NW, Yancopoulos GD, DeChiara TM, Valenzuela DM (2007) F0 generation mice fully derived from gene-targeted embryonic stem cells allowing immediate phenotypic analyses. Nat Biotechnol 25:91–99
Tokunaga T, Tsunoda Y (1992) Efficacious production of viable germ-line chimeras between embryonic stem (ES) cells and eight-cell stage embryos. Develop Growth Differ 34:561–566
Huang J, Deng K, Wu H, Liu Z, Chen Z, Cao S, Zhou L, Ye X, Keefe DL, Liu L (2008) Efficient production of mice from embryonic stem cells injected into four- or eight-cell embryos by piezo micromanipulation. Stem Cells 26:1883–1890
De Repentigny Y, Kothary R (2010) Production of mouse chimeras by injection of embryonic stem cells into the perivitelline space of one-cell stage embryos. Transgenic Res 19:1137–1344
Kraus P, Leong G, Tan V, Xing X, Goh JW, Yap SP, Lufkin T (2010) A more cost effective and rapid high percentage germ-line transmitting chimeric mouse generation procedure via microinjection of 2-cell, 4-cell, and 8-cell embryos with ES and iPS cells. Genesis 48:394–349
Tanaka M, Hadjantonakis AK, Vintersten K, Nagy A (2009) Aggregation chimeras: combining ES cells, diploid, and tetraploid embryos. Methods Mol Biol 530:287–309
Williams E, Auerbach W, DeChiara TM, Gertsenstein M (2011) Combining ES cells with embryos. In: Pease S, Saunders TL (eds) Advanced protocols for animal transgenesis: an ISTT manual. Springer-Verlag, Berlin, pp 377–430
Ménoret S, Fontanière S, Jantz D, Tesson L, Thinard R, Rémy S, Usal C, Ouisse LH, Fraichard A, Anegon I (2013) Generation of Rag1-knockout immunodeficient rats and mice using engineered meganucleases. FASEB J 27:703–711
Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Ménoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325:433
Mashimo T, Takizawa A, Voigt B, Yoshimi K, Hiai H, Kuramoto T, Serikawa T (2010) Generation of knockout rats with X-linked severe combined immunodeficiency (X-SCID) using zinc-finger nucleases. PLoS One 5:e8870
Meyer M, de Angelis MH, Wurst W, Kühn R (2010) Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proc Natl Acad Sci U S A 107:15022–15026
Cui X, Ji D, Fisher DA, Wu Y, Briner DM, Weinstein EJ (2011) Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol 29:64–67
Geurts AM, Moreno C (2010) Zinc-finger nucleases: new strategies to target the rat genome. Clin Sci (Lond) 19:303–311
Wright DA, Thibodeau-Beganny S, Sander JD, Winfrey RJ, Hirsh AS, Eichtinger M, Fu F, Porteus MH, Dobbs D, Voytas DF, Joung JK (2006) Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. Nat Protoc 1:1637–1652
Tesson L, Usal C, Ménoret S, Leung E, Niles BJ, Remy S, Santiago Y, Vincent AI, Meng X, Zhang L, Gregory PD, Anegon I, Cost GJ (2011) Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol 29:695–696
Davies B, Davies G, Preece C, Puliyadi R, Szumska D, Bhattacharya S (2013) Site specific mutation of the Zic2 locus by microinjection of TALEN mRNA in mouse CD1, C3H and C57BL/6J oocytes. PLoS One 8:e60216
Kato T, Miyata K, Sonobe M, Yamashita S, Tamano M, Miura K, Kanai Y, Miyamoto S, Sakuma T, Yamamoto T, Inui M, Kikusui T, Asahara H, Takada S (2013) Production of Sry knockout mouse using TALEN via oocyte injection. Sci Rep 3:3136
Qiu Z, Liu M, Chen Z, Shao Y, Pan H, Wei G, Yu C, Zhang L, Li X, Wang P, Fan HY, Du B, Liu B, Liu M, Li D (2013) High-efficiency and heritable gene targeting in mouse by transcription activator-like effector nucleases. Nucleic Acids Res 41:e120
Sung YH, Baek IJ, Kim DH, Jeon J, Lee J, Lee K, Jeong D, Kim JS, Lee HW (2013) Knockout mice created by TALEN-mediated gene targeting. Nat Biotechnol 31:23–24
Takada S, Sato T, Ito Y, Yamashita S, Kato T, Kawasumi M, Kanai-Azuma M, Igarashi A, Kato T, Tamano M, Asahara H (2013) Targeted gene deletion of miRNAs in mice by TALEN system. PLoS One 8:e76004
Wefers B, Meyer M, Ortiz O, Hrabé de Angelis M, Hansen J, Wurst W, Kühn R (2013) Direct production of mouse disease models by embryo microinjection of TALENs and oligodeoxynucleotides. Proc Natl Acad Sci U S A 110:3782–3787
Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e827
Chandrasegaran S, Carroll D (2016) Origins of programmable nucleases for genome engineering. J Mol Biol 428(5 Pt B):963–989
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823
Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J (2013) RNA-programmed genome editing in human cells. elife 2:e00471
Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826
Mashiko D, Fujihara Y, Satouh Y, Miyata H, Isotani A, Ikawa M (2013) Generation of mutant mice by pronuclear injection of circular plasmid expressing Cas9 and single guided RNA. Sci Rep 3:3355
Watts SW, Darios ES, Mullick AE, Garver H, Saunders TL, Hughes ED, Filipiak WE, Zeidler MG, McMullen N, Sinal CJ, Kumar RK, Ferland DJ, Fink GD (2018) The chemerin knockout rat reveals chemerin dependence in female, but not male, experimental hypertension. FASEB J 32:6596–6614
Xu J, Zhang L, Xie M, Li Y, Huang P, Saunders TL, Fox DA, Rosenquist R, Lin F (2018) Role of complement in a rat model of paclitaxel-induced peripheral neuropathy. J Immunol 200:4094–4101
Allan CM, Heizer PJ, Tu Y, Sandoval NP, Jung RS, Morales JE, Sajti E, Troutman TD, Saunders TL, Cusanovich DA, Beigneux AP, Romanoski CE, Fong LG, Young SG (2018) An upstream enhancer regulates Gpihbp1 expression in a tissue-specific manner. J Lipid Res 60(4):869–879
Birling MC, Schaeffer L, André P, Lindner L, Maréchal D, Ayadi A, Sorg T, Pavlovic G, Hérault Y (2017) Efficient and rapid generation of large genomic variants in rats and mice using CRISMERE. Sci Rep 7:43331
Boroviak K, Doe B, Banerjee R, Yang F, Bradley A (2016) Chromosome engineering in zygotes with CRISPR/Cas9. Genesis 54:78–85
Cheng X, Waghulde H, Mell B, Morgan EE, Pruett-Miller SM, Joe B (2017) Positional cloning of quantitative trait nucleotides for blood pressure and cardiac QT-interval by targeted CRISPR/Cas9 editing of a novel long non-coding RNA. PLoS Genet 13:e1006961
Kim JW, Zhang H, Seymen F, Koruyucu M, Hu Y, Kang J, Kim YJ, Ikeda A, Kasimoglu Y, Bayram M, Zhang C, Kawasaki K, Bartlett JD, Saunders TL, Simmer JP, Hu JC (2018) Mutations in RELT cause autosomal recessive amelogenesis imperfecta. Clin Genet 95(3):375–383. https://doi.org/10.1111/cge.13487
Yoshimi K, Kaneko T, Voigt B, Mashimo T (2014) Allele-specific genome editing and correction of disease-associated phenotypes in rats using the CRISPR-Cas platform. Nat Commun 5:4240
Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154:1370–1379
Mohsen Z, Sim H, Garcia-Galiano D, Han X, Bellefontaine N, Saunders TL, Elias CF (2017) Sexually dimorphic distribution of Prokr2 neurons revealed by the Prokr2-Cre mouse model. Brain Struct Funct 222:4111–4129
Mizuhashi K, Ono W, Matsushita Y, Sakagami N, Takahashi A, Saunders TL, Nagasawa T, Kronenberg HM, Ono N (2018) Resting zone of the growth plate houses a unique class of skeletal stem cells. Nature 563:254–258
Miura H, Gurumurthy CB, Sato T, Sato M, Ohtsuka M (2015) CRISPR/Cas9-based generation of knockdown mice by intronic insertion of artificial microRNA using longer single-stranded DNA. Sci Rep 5:12799
Quadros RM, Miura H, Harms DW, Akatsuka H, Sato T, Aida T, Redder R, Richardson GP, Inagaki Y, Sakai D, Buckley SM, Seshacharyulu P, Batra SK, Behlke MA, Zeiner SA, Jacobi AM, Izu Y, Thoreson WB, Urness LD, Mansour SL, Ohtsuka M, Gurumurthy CB (2017) Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins. Genome Biol 18:92
Yoshimi K, Kunihiro Y, Kaneko T, Nagahora H, Voigt B, Mashimo T (2016) ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes. Nat Commun 7:10431
Gu B, Posfai E, Rossant J (2018) Efficient generation of targeted large insertions by microinjection into two-cell-stage mouse embryos. Nat Biotechnol 36:632–637
Paix A, Folkmann A, Goldman DH, Kulaga H, Grzelak MJ, Rasoloson D, Paidemarry S, Green R, Reed RR, Seydoux G (2017) Precision genome editing using synthesis-dependent repair of Cas9-induced DNA breaks. Proc Natl Acad Sci U S A 114:E10745–E10754
Yao X, Zhang M, Wang X, Ying W, Hu X, Dai P, Meng F, Shi L, Sun Y, Yao N, Zhong W, Li Y, Wu K, Li W, Chen ZJ, Yang H (2018) Tild-CRISPR allows for efficient and precise gene knockin in mouse and human cells. Dev Cell 45:526–536
Codner GF, Mianné J, Caulder A, Loeffler J, Fell R, King R, Allan AJ, Mackenzie M, Pike FJ, McCabe CV, Christou S, Joynson S, Hutchison M, Stewart ME, Kumar S, Simon MM, Agius L, Anstee QM, Volynski KE, Kullmann DM, Wells S, Teboul L (2018) Application of long single-stranded DNA donors in genome editing: generation and validation of mouse mutants. BMC Biol 16:70
Gurumurthy C, Quadros R, Adams J Jr, Alcaide P, Ayabe S, Ballard J, Batra SK, Beauchamp M-C, Becker KA, Bernas G, Brough D, Carrillo-Salinas F, Dawson R, DeMambro V, D’Hont J, Dibb K, Eudy JD, Gan L, Gao J, Gonzales A, Guntur A, Guo H, Harms DW, Harrington A, Hentges KE, Humphreys N, Imai S, Ishii H, Iwama M, Jonasch E, Karolak M, Keavney B, Khin N-C, Masamitsu Konno M, Kotani Y, Kunihiro Y, Lakshmanan I, Larochelle C, Lawrence CB, Li L, Lindner V, Liu X-D, Lopez-Castejon G, Loudon A, Lowe J, Jerome-Majeweska L, Matsusaka T, Miura H, Miyasaka Y, Morpurgo B, Motyl K, Nabeshima Y-I, Nakade K, Nakashiba T, Nakashima K, Obata Y, Ogiwara S, Ouellet M, Oxburgh L, Piltz S, Pinz I, Ponnusamy MP, Ray D, Redder RJ, Rosen CJ, Ross N, Ruhe MT, Ryzhova L, Salvador AM, Sedlacek R, Sharma K, Smith C, Staes K, Starrs L, Sugiyama F, Takahashi S, Tanaka T, Trafford A, Uno Y, Vanhoutte L, Vanrockeghem F, Willis BJ, Wright CS, Yamauchi Y, Yi X, Yoshimi K, Zhang X, Zhang Y, Ohtsuka M, Das S, Garry DJ, Hochepied T, Thomas P, Parker-Thornburg J, Adamson AD, Yoshiki A, Schmouth J-F, Golovko A, Thompson WR, Lloyd KC, Wood JA, Cowan M, Mashimo T, Mizuno S, Zhu H, Kasparek P, Liaw L, Miano JM, Burgio G (2018) Re-evaluating one-step generation of mice carrying conditional alleles by CRISPR-Cas9-mediated genome editing technology. BioRxiv. https://doi.org/10.1101/393231
Lanza DG, Gaspero A, Lorenzo I, Liao L, Zheng P, Wang Y, Deng Y, Cheng C, Zhang C, Seavitt JR, DeMayo FJ, Xu J, Dickinson ME, Beaudet AL, Heaney JD (2018) Comparative analysis of single-stranded DNA donors to generate conditional null mouse alleles. BMC Biol 16:69
Miyasaka Y, Uno Y, Yoshimi K, Kunihiro Y, Yoshimura T, Tanaka T, Ishikubo H, Hiraoka Y, Takemoto N, Tanaka T, Ooguchi Y, Skehel P, Aida T, Takeda J, Mashimo T (2018) CLICK: one-step generation of conditional knockout mice. BMC Genomics 19:318
Baker O, Tsurkan S, Fu J, Klink B, Rump A, Obst M, Kranz A, Schröck E, Anastassiadis K, Stewart AF (2017) The contribution of homology arms to nuclease-assisted genome engineering. Nucleic Acids Res 45:8105–8115
Jung CJ, Zhang J, Trenchard E, Lloyd KC, West DB, Rosen B, de Jong PJ (2017) Efficient gene targeting in mouse zygotes mediated by CRISPR/Cas9-protein. Transgenic Res 26:263–277
Hasty P, Abuin A, Bradley A (2000) Gene targeting, principles, and practice in mammalian cells. In: Joyner AL (ed) Gene targeting: a practical approach. Oxford University Press, Oxford, pp 1–35
Müller U (1999) Ten years of gene targeting: targeted mouse mutants, from vector design to phenotype analysis. Mech Dev 82:3–21
Saunders TL (2011) Gene targeting vector design for embryonic stem cell modifications. In: Pease S, Saunders TL (eds) Advanced protocols for animal transgenesis: an ISTT manual. Springer-Verlag, Berlin, pp 57–79
Anderson KR, Haeussler M, Watanabe C, Janakiraman V, Lund J, Modrusan Z, Stinson J, Bei Q, Buechler A, Yu C, Thamminana SR, Tam L, Sowick MA, Alcantar T, O’Neil N, Li J, Ta L, Lima L, Roose-Girma M, Rairdan X, Durinck S, Warming S (2018) CRISPR off-target analysis in genetically engineered rats and mice. Nat Methods 15:512–514
Kosicki M, Tomberg K, Bradley A (2018) Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol 36:765–771
Haeussler M, Schönig K, Eckert H, Eschstruth A, Mianné J, Renaud JB, Schneider-Maunoury S, Shkumatava A, Teboul L, Kent J, Joly JS, Concordet JP (2016) Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol 17:148
Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351:84–88
Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529:490–495
Vakulskas CA, Dever DP, Rettig GR, Turk R, Jacobi AM, Collingwood MA, Bode NM, McNeill MS, Yan S, Camarena J, Lee CM, Park SH, Wiebking V, Bak RO, Gomez-Ospina N, Pavel-Dinu M, Sun W, Bao G, Porteus MH, Behlke MA (2018) A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat Med 24:1216–1224
Iyer V, Boroviak K, Thomas M, Doe B, Riva L, Ryder E, Adams DJ (2018) No unexpected CRISPR-Cas9 off-target activity revealed by trio sequencing of gene-edited mice. PLoS Genet 14:e1007503
Montoliu L, Whitelaw CBA (2018) Unexpected mutations were expected and unrelated to CRISPR-Cas9 activity. Transgenic Res 27:315–319
Kumar RA, Chan KL, Wong AH, Little KQ, Rajcan-Separovic E, Abrahams BS, Simpson EM (2004) Unexpected embryonic stem (ES) cell mutations represent a concern in gene targeting: lessons from "fierce" mice. Genesis 38:51–57
Westrick RJ, Mohlke KL, Korepta LM, Yang AY, Zhu G, Manning SL, Winn ME, Dougherty KM, Ginsburg D (2010) Spontaneous Irs1 passenger mutation linked to a gene-targeted SerpinB2 allele. Proc Natl Acad Sci U S A 107:16904–16909
Khin NC, Lowe JL, Jensen LM, Burgio G (2017) No evidence for genome editing in mouse zygotes and HEK293T human cell line using the DNA-guided Natronobacterium gregoryi Argonaute (NgAgo). PLoS One 12:e0178768
Watkins-Chow DE, Varshney GK, Garrett LJ, Chen Z, Jimenez EA, Rivas C, Bishop KS, Sood R, Harper UL, Pavan WJ, Burgess SM (2017) Highly efficient Cpf1-mediated gene targeting in mice following high concentration pronuclear injection. G3 (Bethesda) 7:719–722
Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771
Mann JR, McMahon AP (1993) Factors influencing frequency production of transgenic mice. Methods Enzymol 225:771–781
Page RL, Canseco RS, Russell CG, Johnson JL, Velander WH, Gwazdauskas FC (1995) Transgene detection during early murine embryonic development after pronuclear microinjection. Transgenic Res 4:12–17
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Saunders, T.L. (2020). The History of Transgenesis. In: Larson, M. (eds) Transgenic Mouse. Methods in Molecular Biology, vol 2066. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9837-1_1
Download citation
DOI: https://doi.org/10.1007/978-1-4939-9837-1_1
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-4939-9836-4
Online ISBN: 978-1-4939-9837-1
eBook Packages: Springer Protocols