The History of Transgenesis

  • Thomas L. SaundersEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2066)


A transgenic mouse carries within its genome an artificial DNA construct (transgene) that is deliberately introduced by an experimentalist. These animals are widely used to understand gene function and protein function. When addressing the history of transgenic mouse technology, it is apparent that a number of basic science research areas laid the groundwork for success. These include reproductive science, genetics and molecular biology, and micromanipulation and microscopy equipment. From reproductive physiology came applications on how to optimize mouse breeding, how to superovulate mice to produce zygotes for DNA microinjection or preimplantation embryos for combination with embryonic stem (ES) cells, and how to return zygotes and embryos to a pseudopregnant surrogate dam for gestation and birth. From developmental biology, it was learned how to micromanipulate embryos for morula aggregation and blastocyst microinjection and how to establish germline competent ES cells. From genetics came the foundational principles governing the inheritance of genes, the interactions of gene products, and an understanding of the phenotypic consequences of genetic mutations. From molecular biology came a panoply of tools and reagents that are used to clone DNA transgenes, to detect the presence of transgenes, to assess gene expression by measuring transcription, and to detect proteins in cells and tissues. Technical advances in light microscopes, micromanipulators, micropipette pullers, and ancillary equipment made it possible for experimentalists to insert thin glass needles into zygotes or embryos under controlled conditions to inject DNA solutions or ES cells. To fully discuss the breadth of contributions of these numerous scientific disciplines to a comprehensive history of transgenic science is beyond the scope of this work. Examples will be used to illustrate scientific developments central to the foundation of transgenic technology and that are in use today.

Key words

Transgene Transgenic mice Superovulation Transgenesis Micromanipulation Transgenic core facility 


  1. 1.
    Gates WH (1925) The Japanese waltzing mouse, its origin and genetics. Proc Natl Acad Sci U S A 11:651–653PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Crow JF (2002) C. C. Little, cancer and inbred mice. Genetics 161:1357–1361PubMedPubMedCentralGoogle Scholar
  3. 3.
    Morse HCIII (ed) (1978) Origins of inbred mice. Academic Press, New YorkGoogle Scholar
  4. 4.
    Silver LM (1995) Mouse genetics: concepts and applications. Oxford University Press, OxfordGoogle Scholar
  5. 5.
    Silvers WK (1979) The coat colors of mice: a model for mammalian gene action and interaction. Springer Verlag, BerlinCrossRefGoogle Scholar
  6. 6.
    Russell LB (2013) The mouse house: a brief history of the ORNL mouse-genetics program, 1947–2009. Mutat Res 753(2):69–90. PMID: 23994540PubMedCrossRefGoogle Scholar
  7. 7.
    Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171:737–738PubMedCrossRefGoogle Scholar
  8. 8.
    Jackson DA, Symons RH, Berg P (1972) Biochemical method for inserting new genetic information into DNA of simian virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc Natl Acad Sci U S A 69:2904–2909PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Cobb RE, Ning JC, Zhao H (2014) DNA assembly techniques for next-generation combinatorial biosynthesis of natural products. J Ind Microbiol Biotechnol 41(2):469–477. PMID: 24127070PubMedCrossRefGoogle Scholar
  10. 10.
    Hughes RA, Miklos AE, Ellington AD (2011) Gene synthesis: methods and applications. Methods Enzymol 498:277–309PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Summers MC (2014) A brief history of the development of the KSOM family of media. Hum Fertil (Camb) 17(Suppl 1):12–16CrossRefGoogle Scholar
  12. 12.
    Zarrow MX, Wilson ED (1961) The influence of age on superovulation in the immature rat and mouse. Endocrinology 69:851–855PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Spearow JL (1988a) Major genes control hormone-induced ovulation rate in mice. J Reprod Fertil 82:787–797PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Nagy A, Gertsenstein M, Vintersten K, Behringer R (2014) Manipulating the mouse embryo: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  15. 15.
    El-Badry HM (1963) Micromanipulators and micromanipulation. Springer Verlag, ViennaCrossRefGoogle Scholar
  16. 16.
    Lin TP (1966) Microinjection of mouse eggs. Science 151:333–337PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci U S A 77:7380–7384PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Aschheim Z (1928) Die schwangerschaftsdiagnose aus dem harn durch nachweis des hypophysenvorderlappenhormons. Klin Wochenschr 7:1404–1411CrossRefGoogle Scholar
  19. 19.
    Cole HH, Hart GH (1930) The potency of blood serum of mares in progressive stages of pregnancy in effecting the sexual maturity of the immature rat. Am J Phys 93:57–68CrossRefGoogle Scholar
  20. 20.
    Evans HM, Gustus EL, Simpson ME (1933) Concentration of the gonadotropic hormone in pregnant mare’s serum. J Exp Med 58:569–574PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Runner MN, Gates A (1954) Conception in prepuberal mice following artificially induced ovulation and mating. Nature 174:222–223PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Runner MN, Palm J (1953) Transplantation and survival of unfertilized ova of the mouse in relation to postovulatory age. J Exp Zool 134:303–316CrossRefGoogle Scholar
  23. 23.
    Van Blerkom J, Runner MN (1976) The fine structural development of preimplantation mouse parthenotes. J Exp Zool 196:113–124PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Wilson ED, Zarrow MX (1962) Comparison of superovulation in the immature mouse and rat. J Reprod Fertil 3:148–158PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Gates AH, Bozarth JL (1978) Ovulation in the PMSG-treated immature mouse: effect of dose, age, weight, puberty, season and strain (BALB/c, 129 and C129F1 hybrid). Biol Reprod 18:497–505PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Cosby NC, Chou K, Dukelow WR (1989) Embryo production in B6D2-F1 mice using two superovulating regimens. Lab Anim Sci 39:249–250PubMedPubMedCentralGoogle Scholar
  27. 27.
    Taketo M, Schroeder AC, Mobraaten LE, Gunning KB, Hanten G, Fox RR, Roderick TH, Stewart CL, Lilly F, Hansen CT, Overbeek PA (1991) FVB/N: an inbred mouse strain preferable for transgenic analyses. Proc Natl Acad Sci U S A 88(6):2065–2069. PMID: 1848692PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Brooke DA, Orsi NM, Ainscough JF, Holwell SE, Markham AF, Coletta PL (2007) Human menopausal and pregnant mare serum gonadotrophins in murine superovulation regimens for transgenic applications. Theriogenology 67:1409–1413PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Popova E, Krivokharchenko A, Ganten D, Bader M (2002) Comparison between PMSG- and FSH induced superovulation for the generation of transgenic rats. Mol Reprod Dev 63:177–182PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Filipiak WE, Saunders TL (2006) Advances in transgenic rat production. Transgenic Res 15:673–686PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Takeo T, Nakagata N (2015) Superovulation using the combined administration of inhibin antiserum and equine chorionic gonadotropin increases the number of ovulated oocytes in C57BL/6 female mice. PLoS One 10:e0128330PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Hasegawa A, Mochida K, Inoue H, Noda Y, Endo T, Watanabe G, Ogura A (2016) High-yield superovulation in adult mice by anti-inhibin serum treatment combined with estrous cycle synchronization. Biol Reprod 94:21PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Nakagawa Y, Sakuma T, Nishimichi N, Yokosaki Y, Yanaka N, Takeo T, Nakagata N, Yamamoto T (2016) Ultra-superovulation for the CRISPR-Cas9-mediated production of gene-knockout, single-amino-acid-substituted, and floxed mice. Biol Open 5(8):1142–11428PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Runner MN (1947) Development of mouse eggs in the anterior chamber of the eye. Anat Rec 98:1–17PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Hammond J Jr (1949) Recovery and culture of tubal mouse ova. Nature 163:28–29PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Whitten WK (1956) Culture of tubal mouse ova. Nature 177:96PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Whitten WK (1957) Culture of tubal ova. Nature 179:1081–1082PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Brinster RL (1965) Studies on the development of mouse embryos in vitro. IV. Interaction of energy sources. J Reprod Fertil 10:227–240PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Brinster RL, Biggers JD (1965) In-vitro fertilization of mouse ova within the explanted fallopian tube. J Reprod Fertil 10:277–279PubMedCrossRefGoogle Scholar
  40. 40.
    Whitten WK, Biggers JD (1968) Complete development in vitro of the pre-implantation stages of the mouse in a simple chemically defined medium. J Reprod Fertil 17:399–401PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Chatot CL, Ziomek CA, Bavister BD, Lewis JL, Torres I (1989) An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro. J Reprod Fertil 86:679–688PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Chatot CL, Lewis JL, Torres I, Ziomek CA (1990) Development of 1-cell embryos from different strains of mice in CZB medium. Biol Reprod 42:432–440PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Erbach GT, Lawitts JA, Papaioannou VE, Biggers JD (1994) Differential growth of the mouse preimplantation embryo in chemically defined media. Biol Reprod 50(5):1027–1033. PMID: 8025158PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Biggers JD, McGinnis LK, Raffin M (2000) Amino acids and preimplantation development of the mouse in protein-free potassium simplex optimized medium. Biol Reprod 63:281–293PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Quinn P, Barros C, Whittingham DG (1982) Preservation of hamster oocytes to assay the fertilizing capacity of human spermatozoa. J Reprod Fertil 66:161–168PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Whittingham DG (1971) Culture of mouse ova. J Reprod Fertil Suppl 14:7–21PubMedPubMedCentralGoogle Scholar
  47. 47.
    Lawitts JA, Biggers JD (1993) Culture of preimplantation embryos. Methods Enzymol 225:153–164PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Biggers JD (1998) Reflections on the culture of the preimplantation embryo. Int J Dev Biol 42:879–884PubMedPubMedCentralGoogle Scholar
  49. 49.
    Summers MC, Biggers JD (2003) Chemically defined media and the culture of mammalian preimplantation embryos: historical perspective and current issues. Hum Reprod Update 9:557–582PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Heape W (1890) Preliminary note on the transplantation and growth of mammalian ova within a uterine foster mother. Proc Roy Soc London B 48:457–458Google Scholar
  51. 51.
    Nicholas JS, Rudnick D (1934) The development of rat embryos in tissue culture. Proc Natl Acad Sci U S A 20:656–658PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Bittner JJ, Little CC (1937) Transmission of breast and lung cancer in mice. J Hered 28:117–121CrossRefGoogle Scholar
  53. 53.
    McLaren A, Michie D (1956) Studies on the transfer of fertilized mouse eggs to uterine foster-mothers. J Exp Biol 33:394–416Google Scholar
  54. 54.
    Fekete E, Little CC (1942) Observations on the mammary tumor incidence of mice born from transferred ova. Cancer Res 2:525–530Google Scholar
  55. 55.
    Tarkowski AK (1959b) Experiments on the transplantation of ova in mice. Acta Theriol 2:251–267CrossRefGoogle Scholar
  56. 56.
    Ueda O, Yorozu K, Kamada N, Jishage K, Kawase Y, Toyoda Y, Suzuki H (2003) Possible expansion of "window of implantation" in pseudopregnant mice: time of implantation of embryos at different stages of development transferred into the same recipient. Biol Reprod 69:1085–1090PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Goto Y, Noda Y, Shiotani M, Kishi J, Nonogaki T, Mori T (1993) The fate of embryos transferred into the uterus. J Assist Reprod Genet 10:197–201PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Johnson LW, Moffatt RJ, Bartol FF, Pinkert CA (1996) Optimization of embryo transfer protocols for mice. Theriogenology 46:1267–1276PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Chin HJ, Wang CK (2001) Utero-tubal transfer of mouse embryos. Genesis 30:77–81PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Pease S, Schroeder AC, Schmidt GH (1989) Production of transgenic mice: acupuncture needle-facilitated embryo transfer to oviduct ampulla. Trends Genet 5:293PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Zhang Z, Lv X, Wang Y, Chen Y, Zheng R, Sun H, Bian G, Xiao Y, Li Q, Yang Q, Ai J, Duan J, Tan R, Liu Y, Yang Y, Wei Y, Zhou Q (2009) Success of murine embryo transfer increased by a modified transfer pipette. J Reprod Dev 55:94–97PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Fielder TJ, Montoliu L (2011) Transgenic production benchmarks. In: Pease S, Saunders TL (eds) Advanced protocols for animal transgenesis: an ISTT manual. Springer-Verlag, Berlin, pp 81–97CrossRefGoogle Scholar
  63. 63.
    Gates AH (1956) Viability and developmental capacity of eggs from immature mice treated with gonadotrophins. Nature 177:754–755PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Bronson RA, McLaren A (1970) Transfer to the mouse oviduct of eggs with and without the zona pellucida. J Reprod Fertil 22:129–137PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Rülicke T, Haenggli A, Rappold K, Moehrlen U, Stallmach T (2006) No transuterine migration of fertilised ova after unilateral embryo transfer in mice. Reprod Fertil Dev 18:885–891PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Beatty RA (1951) Transplantation of mouse eggs. Nature 168:995PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Cui L, Zhang Z, Sun F, Duan X, Wang M, Di K, Li X (2014) Transcervical embryo transfer in mice. J Am Assoc Lab Anim Sci 53:228–231PubMedPubMedCentralGoogle Scholar
  68. 68.
    Green M, Bass S, Spear B (2009) A device for the simple and rapid transcervical transfer of mouse embryos eliminates the need for surgery and potential post-operative complications. BioTechniques 47:919–924PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Steele KH, Hester JM, Stone BJ, Carrico KM, Spear BT, Fath-Goodin A (2013) Nonsurgical embryo transfer device compared with surgery for embryo transfer in mice. J Am Assoc Lab Anim Sci 52:17–21PubMedPubMedCentralGoogle Scholar
  70. 70.
    Spearow JL (1988b) Characterization of genetic differences in hormone-induced ovulation rate in mice. J Reprod Fertil 82:799–806PubMedCrossRefGoogle Scholar
  71. 71.
    Legge M, Sellens MH (1994) Optimization of superovulation in the reproductively mature mouse. J Assist Reprod Genet 11:312–318PubMedCrossRefGoogle Scholar
  72. 72.
    Roudebush WE, Duralia DR (1996) Superovulation, fertilization, and in vitro embryo development in BALB/cByJ, BALB/cJ, B6D2F1/J, and CFW mouse strains. Lab Anim Sci 46:239–240PubMedGoogle Scholar
  73. 73.
    Osman GE, Jacobson DP, Li SW, Hood LE, Liggitt HD, Ladiges WC (1997) SWR: an inbred strain suitable for generating transgenic mice. Lab Anim Sci 47:167–171PubMedGoogle Scholar
  74. 74.
    Vergara GJ, Irwin MH, Moffatt RJ, Pinkert CA (1997) In vitro fertilization in mice: strain differences in response to superovulation protocols and effect of cumulus cell removal. Theriogenology 47:1245–1252PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Auerbach AB, Norinsky R, Ho W, Losos K, Guo Q, Chatterjee S, Joyner AL (2003) Strain-dependent differences in the efficiency of transgenic mouse production. Transgenic Res 12:59–69PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Byers SL, Payson SJ, Taft RA (2006) Performance of ten inbred mouse strains following assisted reproductive technologies (ARTs). Theriogenology 65:1716–1726PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Luo C, Zuñiga J, Edison E, Palla S, Dong W, Parker-Thornburg J (2011) Superovulation strategies for 6 commonly used mouse strains. J Am Assoc Lab Anim Sci 50:471–478PubMedPubMedCentralGoogle Scholar
  78. 78.
    Mochida K, Hasegawa A, Otaka N, Hama D, Furuya T, Yamaguchi M, Ichikawa E, Ijuin M, Taguma K, Hashimoto M, Takashima R, Kadota M, Hiraiwa N, Mekada K, Yoshiki A, Ogura A (2014) Devising assisted reproductive technologies for wild-derived strains of mice: 37 strains from five subspecies of Mus musculus. PLoS One 9:e114305PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Kolbe T, Landsberger A, Manz S, Na E, Urban I, Michel G (2015) Productivity of superovulated C57BL/6J oocyte donors at different ages. Lab Anim (NY) 44:346–349CrossRefGoogle Scholar
  80. 80.
    Brinster RL, Chen HY, Trumbauer ME, Yagle MK, Palmiter RD (1985) Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs. Proc Natl Acad Sci U S A 82:4438–4442PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Fielder TJ, Barrios L, Montoliu L (2010) A survey to establish performance standards for the production of transgenic mice. Transgenic Res 19:675–681PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Berg P, Mertz JE (2010) Personal reflections on the origins and emergence of recombinant DNA technology. Genetics 184:9–17PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Cohen SN (2013) DNA cloning: a personal view after 40 years. Proc Natl Acad Sci U S A 110:15521–15529PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Bacchetti S, Graham FL (1977) Transfer of the gene for thymidine kinase to thymidine kinase-deficient human cells by purified herpes simplex viral DNA. Proc Natl Acad Sci U S A 74:1590–1594PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Maitland NJ, McDougall JK (1977) Biochemical transformation of mouse cells by fragments of herpes simplex virus DNA. Cell 11:233–241PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Wigler M, Silverstein S, Lee LS, Pellicer A, Cheng Y, Axel R (1977) Transfer of purified herpes virus thymidine kinase gene to cultured mouse cells. Cell 11:223–232PubMedCrossRefGoogle Scholar
  87. 87.
    Graham FL, van der Eb AJ (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467PubMedCrossRefGoogle Scholar
  88. 88.
    Tarkowski AK (1959) Experiments on the development of isolated blastomeres of mouse eggs. Nature 184:1286–1287PubMedCrossRefGoogle Scholar
  89. 89.
    Fulton BP, Whittingham DG (1978) Activation of mammalian oocytes by intracellular injection of calcium. Nature 273:149–151PubMedCrossRefGoogle Scholar
  90. 90.
    Wilson IB, Bolton E, Cuttler RH (1972) Preimplantation differentiation in the mouse egg as revealed by microinjection of vital markers. J Embryol Exp Morphol 27:467–469PubMedPubMedCentralGoogle Scholar
  91. 91.
    Brinster RL, Chen HY, Trumbauer ME, Avarbock MR (1980) Translation of globin messenger RNA by the mouse ovum. Nature 283:499–501PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Folger KR, Wong EA, Wahl G, Capecchi MR (1982) Patterns of integration of DNA microinjected into cultured mammalian cells: evidence for homologous recombination between injected plasmid DNA molecules. Mol Cell Biol 2:1372–1387PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    McFarlane M, Wilson JB (1996) A model for the mechanism of precise integration of a microinjected transgene. Transgenic Res 5:171–177PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Smith K (2001) Theoretical mechanisms in targeted and random integration of transgene DNA. Reprod Nutr Dev 41:465–485PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Nakanishi T, Kuroiwa A, Yamada S, Isotani A, Yamashita A, Tairaka A, Hayashi T, Takagi T, Ikawa M, Matsuda Y, Okabe M (2002) FISH analysis of 142 EGFP transgene integration sites into the mouse genome. Genomics 80:564–557PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Le Saux A, Houdebine LM, Jolivet G (2010) Chromosome integration of BAC (bacterial artificial chromosome): evidence of multiple rearrangements. Transgenic Res 19:923–931PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Chiang C, Jacobsen JC, Ernst C, Hanscom C, Heilbut A, Blumenthal I, Mills RE, Kirby A, Lindgren AM, Rudiger SR, McLaughlan CJ, Bawden CS, Reid SJ, Faull RL, Snell RG, Hall IM, Shen Y, Ohsumi TK, Borowsky ML, Daly MJ, Lee C, Morton CC, MacDonald ME, Gusella JF, Talkowski ME (2012) Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration. Nat Genet 44:390–397PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Zhang R, Yin Y, Zhang Y, Li K, Zhu H, Gong Q, Wang J, Hu X, Li N (2012) Molecular characterization of transgene integration by next-generation sequencing in transgenic cattle. PLoS One 7:e50348PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Dubose AJ, Lichtenstein ST, Narisu N, Bonnycastle LL, Swift AJ, Chines PS, Collins FS (2013) Use of microarray hybrid capture and next-generation sequencing to identify the anatomy of a transgene. Nucleic Acids Res 41:e70PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Srivastava A, Philip VM, Greenstein I, Rowe LB, Barter M, Lutz C, Reinholdt LG (2014) Discovery of transgene insertion sites by high throughput sequencing of mate pair libraries. BMC Genomics 15:367PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Smith DJ, Zhu Y, Zhang J, Cheng JF, Rubin EM (1995) Construction of a panel of transgenic mice containing a contiguous 2-Mb set of YAC/P1 clones from human chromosome 21q22.2. Genomics 27:425–434PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Deal KK, Cantrell VA, Chandler RL, Saunders TL, Mortlock DP, Southard-Smith EM (2006) Distant regulatory elements in a Sox10-betaGEO BAC transgene are required for expression of Sox10 in the enteric nervous system and other neural crest-derived tissues. Dev Dyn 235:1413–1432PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Meisler MH (1992) Insertional mutation of ‘classical’ and novel genes in transgenic mice. Trends Genet 8:341–344PubMedPubMedCentralGoogle Scholar
  104. 104.
    Rijkers T, Peetz A, Rüther U (1994) Insertional mutagenesis in transgenic mice. Transgenic Res 3:203–215PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Smithies O (2001) Forty years with homologous recombination. Nat Med 7:1083–1086PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Evans M (2011) Discovering pluripotency: 30 years of mouse embryonic stem cells. Nat Rev Mol Cell Biol 12:680–686PubMedCrossRefGoogle Scholar
  107. 107.
    Capecchi MR (2005) Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet 6:507–512PubMedCrossRefGoogle Scholar
  108. 108.
    Bradley A, Evans M, Kaufman MH, Robertson E (1984) Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309:255–256CrossRefGoogle Scholar
  109. 109.
    Doetschman T, Gregg RG, Maeda N, Hooper ML, Melton DW, Thompson S, Smithies O (1987) Targeted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330:576–578PubMedCrossRefGoogle Scholar
  110. 110.
    Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51:503–512PubMedCrossRefGoogle Scholar
  111. 111.
    Koller BH, Hagemann LJ, Doetschman T, Hagaman JR, Huang S, Williams PJ, First NL, Maeda N, Smithies O (1989) Germ-line transmission of a planned alteration made in a hypoxanthine phosphoribosyltransferase gene by homologous recombination in embryonic stem cells. Proc Natl Acad Sci U S A 86:8927–8931PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Schwartzberg PL, Goff SP, Robertson EJ (1989) Germ-line transmission of a c-abl mutation produced by targeted gene disruption in ES cells. Science 246:799–803PubMedCrossRefGoogle Scholar
  113. 113.
    Mansour SL, Thomas KR, Capecchi MR (1988) Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336:348–352PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Adra CN, Boer PH, McBurney MW (1987) Cloning and expression of the mouse pgk-1 gene and the nucleotide sequence of its promoter. Gene 60:65–74PubMedCrossRefGoogle Scholar
  115. 115.
    Tybulewicz VL, Crawford CE, Jackson PK, Bronson RT, Mulligan RC (1991) Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 65:1153–1163PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (2011) A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474:337–342PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Yagi T, Ikawa Y, Yoshida K, Shigetani Y, Takeda N, Mabuchi I, Yamamoto T, Aizawa S (1990) Homologous recombination at c-fyn locus of mouse embryonic stem cells with use of diphtheria toxin A-fragment gene in negative selection. Proc Natl Acad Sci U S A 87:9918–9922PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    te Riele H, Maandag ER, Berns A (1992) Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. Proc Natl Acad Sci U S A 89:5128–5132CrossRefGoogle Scholar
  119. 119.
    Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci U S A 90:8424–8428PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Gardner RL (1968) The relationship between cell lineage and differentiation in the early mouse embryo. Results Probl Cell Differ 9:205–241CrossRefGoogle Scholar
  121. 121.
    Moustafa LA, Brinster RL (1972) The fate of transplanted cells in mouse blastocysts in vitro. J Exp Zool 181:181–191PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Babinet C (1980) A simplified method for mouse blastocyst injection. Exp Cell Res 130:15–19PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Poueymirou WT, Auerbach W, Frendewey D, Hickey JF, Escaravage JM, Esau L, Doré AT, Stevens S, Adams NC, Dominguez MG, Gale NW, Yancopoulos GD, DeChiara TM, Valenzuela DM (2007) F0 generation mice fully derived from gene-targeted embryonic stem cells allowing immediate phenotypic analyses. Nat Biotechnol 25:91–99CrossRefGoogle Scholar
  124. 124.
    Tokunaga T, Tsunoda Y (1992) Efficacious production of viable germ-line chimeras between embryonic stem (ES) cells and eight-cell stage embryos. Develop Growth Differ 34:561–566CrossRefGoogle Scholar
  125. 125.
    Huang J, Deng K, Wu H, Liu Z, Chen Z, Cao S, Zhou L, Ye X, Keefe DL, Liu L (2008) Efficient production of mice from embryonic stem cells injected into four- or eight-cell embryos by piezo micromanipulation. Stem Cells 26:1883–1890PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    De Repentigny Y, Kothary R (2010) Production of mouse chimeras by injection of embryonic stem cells into the perivitelline space of one-cell stage embryos. Transgenic Res 19:1137–1344PubMedCrossRefGoogle Scholar
  127. 127.
    Kraus P, Leong G, Tan V, Xing X, Goh JW, Yap SP, Lufkin T (2010) A more cost effective and rapid high percentage germ-line transmitting chimeric mouse generation procedure via microinjection of 2-cell, 4-cell, and 8-cell embryos with ES and iPS cells. Genesis 48:394–349PubMedCrossRefGoogle Scholar
  128. 128.
    Tanaka M, Hadjantonakis AK, Vintersten K, Nagy A (2009) Aggregation chimeras: combining ES cells, diploid, and tetraploid embryos. Methods Mol Biol 530:287–309PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Williams E, Auerbach W, DeChiara TM, Gertsenstein M (2011) Combining ES cells with embryos. In: Pease S, Saunders TL (eds) Advanced protocols for animal transgenesis: an ISTT manual. Springer-Verlag, Berlin, pp 377–430CrossRefGoogle Scholar
  130. 130.
    Ménoret S, Fontanière S, Jantz D, Tesson L, Thinard R, Rémy S, Usal C, Ouisse LH, Fraichard A, Anegon I (2013) Generation of Rag1-knockout immunodeficient rats and mice using engineered meganucleases. FASEB J 27:703–711PubMedCrossRefGoogle Scholar
  131. 131.
    Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Ménoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325:433PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Mashimo T, Takizawa A, Voigt B, Yoshimi K, Hiai H, Kuramoto T, Serikawa T (2010) Generation of knockout rats with X-linked severe combined immunodeficiency (X-SCID) using zinc-finger nucleases. PLoS One 5:e8870PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Meyer M, de Angelis MH, Wurst W, Kühn R (2010) Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proc Natl Acad Sci U S A 107:15022–15026PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Cui X, Ji D, Fisher DA, Wu Y, Briner DM, Weinstein EJ (2011) Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol 29:64–67PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Geurts AM, Moreno C (2010) Zinc-finger nucleases: new strategies to target the rat genome. Clin Sci (Lond) 19:303–311CrossRefGoogle Scholar
  136. 136.
    Wright DA, Thibodeau-Beganny S, Sander JD, Winfrey RJ, Hirsh AS, Eichtinger M, Fu F, Porteus MH, Dobbs D, Voytas DF, Joung JK (2006) Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. Nat Protoc 1:1637–1652PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Tesson L, Usal C, Ménoret S, Leung E, Niles BJ, Remy S, Santiago Y, Vincent AI, Meng X, Zhang L, Gregory PD, Anegon I, Cost GJ (2011) Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol 29:695–696PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Davies B, Davies G, Preece C, Puliyadi R, Szumska D, Bhattacharya S (2013) Site specific mutation of the Zic2 locus by microinjection of TALEN mRNA in mouse CD1, C3H and C57BL/6J oocytes. PLoS One 8:e60216PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Kato T, Miyata K, Sonobe M, Yamashita S, Tamano M, Miura K, Kanai Y, Miyamoto S, Sakuma T, Yamamoto T, Inui M, Kikusui T, Asahara H, Takada S (2013) Production of Sry knockout mouse using TALEN via oocyte injection. Sci Rep 3:3136PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Qiu Z, Liu M, Chen Z, Shao Y, Pan H, Wei G, Yu C, Zhang L, Li X, Wang P, Fan HY, Du B, Liu B, Liu M, Li D (2013) High-efficiency and heritable gene targeting in mouse by transcription activator-like effector nucleases. Nucleic Acids Res 41:e120PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Sung YH, Baek IJ, Kim DH, Jeon J, Lee J, Lee K, Jeong D, Kim JS, Lee HW (2013) Knockout mice created by TALEN-mediated gene targeting. Nat Biotechnol 31:23–24PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Takada S, Sato T, Ito Y, Yamashita S, Kato T, Kawasumi M, Kanai-Azuma M, Igarashi A, Kato T, Tamano M, Asahara H (2013) Targeted gene deletion of miRNAs in mice by TALEN system. PLoS One 8:e76004PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Wefers B, Meyer M, Ortiz O, Hrabé de Angelis M, Hansen J, Wurst W, Kühn R (2013) Direct production of mouse disease models by embryo microinjection of TALENs and oligodeoxynucleotides. Proc Natl Acad Sci U S A 110:3782–3787PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e827CrossRefGoogle Scholar
  145. 145.
    Chandrasegaran S, Carroll D (2016) Origins of programmable nucleases for genome engineering. J Mol Biol 428(5 Pt B):963–989PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J (2013) RNA-programmed genome editing in human cells. elife 2:e00471PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Mashiko D, Fujihara Y, Satouh Y, Miyata H, Isotani A, Ikawa M (2013) Generation of mutant mice by pronuclear injection of circular plasmid expressing Cas9 and single guided RNA. Sci Rep 3:3355PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Watts SW, Darios ES, Mullick AE, Garver H, Saunders TL, Hughes ED, Filipiak WE, Zeidler MG, McMullen N, Sinal CJ, Kumar RK, Ferland DJ, Fink GD (2018) The chemerin knockout rat reveals chemerin dependence in female, but not male, experimental hypertension. FASEB J 32:6596–6614CrossRefGoogle Scholar
  151. 151.
    Xu J, Zhang L, Xie M, Li Y, Huang P, Saunders TL, Fox DA, Rosenquist R, Lin F (2018) Role of complement in a rat model of paclitaxel-induced peripheral neuropathy. J Immunol 200:4094–4101PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Allan CM, Heizer PJ, Tu Y, Sandoval NP, Jung RS, Morales JE, Sajti E, Troutman TD, Saunders TL, Cusanovich DA, Beigneux AP, Romanoski CE, Fong LG, Young SG (2018) An upstream enhancer regulates Gpihbp1 expression in a tissue-specific manner. J Lipid Res 60(4):869–879PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Birling MC, Schaeffer L, André P, Lindner L, Maréchal D, Ayadi A, Sorg T, Pavlovic G, Hérault Y (2017) Efficient and rapid generation of large genomic variants in rats and mice using CRISMERE. Sci Rep 7:43331PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Boroviak K, Doe B, Banerjee R, Yang F, Bradley A (2016) Chromosome engineering in zygotes with CRISPR/Cas9. Genesis 54:78–85PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Cheng X, Waghulde H, Mell B, Morgan EE, Pruett-Miller SM, Joe B (2017) Positional cloning of quantitative trait nucleotides for blood pressure and cardiac QT-interval by targeted CRISPR/Cas9 editing of a novel long non-coding RNA. PLoS Genet 13:e1006961PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Kim JW, Zhang H, Seymen F, Koruyucu M, Hu Y, Kang J, Kim YJ, Ikeda A, Kasimoglu Y, Bayram M, Zhang C, Kawasaki K, Bartlett JD, Saunders TL, Simmer JP, Hu JC (2018) Mutations in RELT cause autosomal recessive amelogenesis imperfecta. Clin Genet 95(3):375–383. Scholar
  157. 157.
    Yoshimi K, Kaneko T, Voigt B, Mashimo T (2014) Allele-specific genome editing and correction of disease-associated phenotypes in rats using the CRISPR-Cas platform. Nat Commun 5:4240PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154:1370–1379PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Mohsen Z, Sim H, Garcia-Galiano D, Han X, Bellefontaine N, Saunders TL, Elias CF (2017) Sexually dimorphic distribution of Prokr2 neurons revealed by the Prokr2-Cre mouse model. Brain Struct Funct 222:4111–4129PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Mizuhashi K, Ono W, Matsushita Y, Sakagami N, Takahashi A, Saunders TL, Nagasawa T, Kronenberg HM, Ono N (2018) Resting zone of the growth plate houses a unique class of skeletal stem cells. Nature 563:254–258PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Miura H, Gurumurthy CB, Sato T, Sato M, Ohtsuka M (2015) CRISPR/Cas9-based generation of knockdown mice by intronic insertion of artificial microRNA using longer single-stranded DNA. Sci Rep 5:12799PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Quadros RM, Miura H, Harms DW, Akatsuka H, Sato T, Aida T, Redder R, Richardson GP, Inagaki Y, Sakai D, Buckley SM, Seshacharyulu P, Batra SK, Behlke MA, Zeiner SA, Jacobi AM, Izu Y, Thoreson WB, Urness LD, Mansour SL, Ohtsuka M, Gurumurthy CB (2017) Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins. Genome Biol 18:92PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Yoshimi K, Kunihiro Y, Kaneko T, Nagahora H, Voigt B, Mashimo T (2016) ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes. Nat Commun 7:10431PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Gu B, Posfai E, Rossant J (2018) Efficient generation of targeted large insertions by microinjection into two-cell-stage mouse embryos. Nat Biotechnol 36:632–637PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Paix A, Folkmann A, Goldman DH, Kulaga H, Grzelak MJ, Rasoloson D, Paidemarry S, Green R, Reed RR, Seydoux G (2017) Precision genome editing using synthesis-dependent repair of Cas9-induced DNA breaks. Proc Natl Acad Sci U S A 114:E10745–E10754PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Yao X, Zhang M, Wang X, Ying W, Hu X, Dai P, Meng F, Shi L, Sun Y, Yao N, Zhong W, Li Y, Wu K, Li W, Chen ZJ, Yang H (2018) Tild-CRISPR allows for efficient and precise gene knockin in mouse and human cells. Dev Cell 45:526–536PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Codner GF, Mianné J, Caulder A, Loeffler J, Fell R, King R, Allan AJ, Mackenzie M, Pike FJ, McCabe CV, Christou S, Joynson S, Hutchison M, Stewart ME, Kumar S, Simon MM, Agius L, Anstee QM, Volynski KE, Kullmann DM, Wells S, Teboul L (2018) Application of long single-stranded DNA donors in genome editing: generation and validation of mouse mutants. BMC Biol 16:70PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Gurumurthy C, Quadros R, Adams J Jr, Alcaide P, Ayabe S, Ballard J, Batra SK, Beauchamp M-C, Becker KA, Bernas G, Brough D, Carrillo-Salinas F, Dawson R, DeMambro V, D’Hont J, Dibb K, Eudy JD, Gan L, Gao J, Gonzales A, Guntur A, Guo H, Harms DW, Harrington A, Hentges KE, Humphreys N, Imai S, Ishii H, Iwama M, Jonasch E, Karolak M, Keavney B, Khin N-C, Masamitsu Konno M, Kotani Y, Kunihiro Y, Lakshmanan I, Larochelle C, Lawrence CB, Li L, Lindner V, Liu X-D, Lopez-Castejon G, Loudon A, Lowe J, Jerome-Majeweska L, Matsusaka T, Miura H, Miyasaka Y, Morpurgo B, Motyl K, Nabeshima Y-I, Nakade K, Nakashiba T, Nakashima K, Obata Y, Ogiwara S, Ouellet M, Oxburgh L, Piltz S, Pinz I, Ponnusamy MP, Ray D, Redder RJ, Rosen CJ, Ross N, Ruhe MT, Ryzhova L, Salvador AM, Sedlacek R, Sharma K, Smith C, Staes K, Starrs L, Sugiyama F, Takahashi S, Tanaka T, Trafford A, Uno Y, Vanhoutte L, Vanrockeghem F, Willis BJ, Wright CS, Yamauchi Y, Yi X, Yoshimi K, Zhang X, Zhang Y, Ohtsuka M, Das S, Garry DJ, Hochepied T, Thomas P, Parker-Thornburg J, Adamson AD, Yoshiki A, Schmouth J-F, Golovko A, Thompson WR, Lloyd KC, Wood JA, Cowan M, Mashimo T, Mizuno S, Zhu H, Kasparek P, Liaw L, Miano JM, Burgio G (2018) Re-evaluating one-step generation of mice carrying conditional alleles by CRISPR-Cas9-mediated genome editing technology. BioRxiv.
  169. 169.
    Lanza DG, Gaspero A, Lorenzo I, Liao L, Zheng P, Wang Y, Deng Y, Cheng C, Zhang C, Seavitt JR, DeMayo FJ, Xu J, Dickinson ME, Beaudet AL, Heaney JD (2018) Comparative analysis of single-stranded DNA donors to generate conditional null mouse alleles. BMC Biol 16:69PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Miyasaka Y, Uno Y, Yoshimi K, Kunihiro Y, Yoshimura T, Tanaka T, Ishikubo H, Hiraoka Y, Takemoto N, Tanaka T, Ooguchi Y, Skehel P, Aida T, Takeda J, Mashimo T (2018) CLICK: one-step generation of conditional knockout mice. BMC Genomics 19:318PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Baker O, Tsurkan S, Fu J, Klink B, Rump A, Obst M, Kranz A, Schröck E, Anastassiadis K, Stewart AF (2017) The contribution of homology arms to nuclease-assisted genome engineering. Nucleic Acids Res 45:8105–8115PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Jung CJ, Zhang J, Trenchard E, Lloyd KC, West DB, Rosen B, de Jong PJ (2017) Efficient gene targeting in mouse zygotes mediated by CRISPR/Cas9-protein. Transgenic Res 26:263–277PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Hasty P, Abuin A, Bradley A (2000) Gene targeting, principles, and practice in mammalian cells. In: Joyner AL (ed) Gene targeting: a practical approach. Oxford University Press, Oxford, pp 1–35Google Scholar
  174. 174.
    Müller U (1999) Ten years of gene targeting: targeted mouse mutants, from vector design to phenotype analysis. Mech Dev 82:3–21PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Saunders TL (2011) Gene targeting vector design for embryonic stem cell modifications. In: Pease S, Saunders TL (eds) Advanced protocols for animal transgenesis: an ISTT manual. Springer-Verlag, Berlin, pp 57–79CrossRefGoogle Scholar
  176. 176.
    Anderson KR, Haeussler M, Watanabe C, Janakiraman V, Lund J, Modrusan Z, Stinson J, Bei Q, Buechler A, Yu C, Thamminana SR, Tam L, Sowick MA, Alcantar T, O’Neil N, Li J, Ta L, Lima L, Roose-Girma M, Rairdan X, Durinck S, Warming S (2018) CRISPR off-target analysis in genetically engineered rats and mice. Nat Methods 15:512–514PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Kosicki M, Tomberg K, Bradley A (2018) Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol 36:765–771PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Haeussler M, Schönig K, Eckert H, Eschstruth A, Mianné J, Renaud JB, Schneider-Maunoury S, Shkumatava A, Teboul L, Kent J, Joly JS, Concordet JP (2016) Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol 17:148PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351:84–88PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529:490–495PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Vakulskas CA, Dever DP, Rettig GR, Turk R, Jacobi AM, Collingwood MA, Bode NM, McNeill MS, Yan S, Camarena J, Lee CM, Park SH, Wiebking V, Bak RO, Gomez-Ospina N, Pavel-Dinu M, Sun W, Bao G, Porteus MH, Behlke MA (2018) A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat Med 24:1216–1224PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Iyer V, Boroviak K, Thomas M, Doe B, Riva L, Ryder E, Adams DJ (2018) No unexpected CRISPR-Cas9 off-target activity revealed by trio sequencing of gene-edited mice. PLoS Genet 14:e1007503PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Montoliu L, Whitelaw CBA (2018) Unexpected mutations were expected and unrelated to CRISPR-Cas9 activity. Transgenic Res 27:315–319PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Kumar RA, Chan KL, Wong AH, Little KQ, Rajcan-Separovic E, Abrahams BS, Simpson EM (2004) Unexpected embryonic stem (ES) cell mutations represent a concern in gene targeting: lessons from "fierce" mice. Genesis 38:51–57PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Westrick RJ, Mohlke KL, Korepta LM, Yang AY, Zhu G, Manning SL, Winn ME, Dougherty KM, Ginsburg D (2010) Spontaneous Irs1 passenger mutation linked to a gene-targeted SerpinB2 allele. Proc Natl Acad Sci U S A 107:16904–16909PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Khin NC, Lowe JL, Jensen LM, Burgio G (2017) No evidence for genome editing in mouse zygotes and HEK293T human cell line using the DNA-guided Natronobacterium gregoryi Argonaute (NgAgo). PLoS One 12:e0178768PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Watkins-Chow DE, Varshney GK, Garrett LJ, Chen Z, Jimenez EA, Rivas C, Bishop KS, Sood R, Harper UL, Pavan WJ, Burgess SM (2017) Highly efficient Cpf1-mediated gene targeting in mice following high concentration pronuclear injection. G3 (Bethesda) 7:719–722CrossRefGoogle Scholar
  188. 188.
    Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Mann JR, McMahon AP (1993) Factors influencing frequency production of transgenic mice. Methods Enzymol 225:771–781PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    Page RL, Canseco RS, Russell CG, Johnson JL, Velander WH, Gwazdauskas FC (1995) Transgene detection during early murine embryonic development after pronuclear microinjection. Transgenic Res 4:12–17PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Transgenic Animal Model CoreUniversity of Michigan Medical SchoolAnn ArborUSA
  2. 2.Division of Genetic Medicine, Department of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborUSA

Personalised recommendations