Advertisement

A Novel System to Discriminate HLA-C mir148a Binding Site by Allele-Specific Quantitative PC R

  • Priscilla Biswas
  • Eddi Di Marco
  • Mauro S. MalnatiEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2065)

Abstract

The levels of expression of the HLA-class I molecules are critical for modulating T/NK lymphocytes effector functions. Among HLA molecules, HLA-C, the most recent developed form of class I antigens, is subjected to multiple post transcriptional level of regulation that affect its cell surface expression.

We describe a new method of allele-specific real-time PCR that monitor the integrity/disruption of the binding site of the microRNA Hsa-miR-148a, a key factor associated to the levels of HLA-C expression in the Caucasian populations.

Key words

Allele-specific real-time PCR Single-nucleotide polymorphism miRNA 148a binding site Epigenetic regulation HLA-C expression 

References

  1. 1.
    Margulies DH, McCluskey J (2003) Antigen processing and presentation. In: Pauls WE (ed) Fundamental immunology. Lippincott Williams & Wilkins, Philadelphia, pp 571–612Google Scholar
  2. 2.
    Moretta A, Bottino C, Vitale M et al (1996) Receptors for HLA class-I molecules in human natural killer cells. Annu Rev Immunol 14:619–648CrossRefGoogle Scholar
  3. 3.
    Long EO (1999) Regulation of immune responses through inhibitory receptors. Annu Rev Immunol 17:875–904CrossRefGoogle Scholar
  4. 4.
    Parham P (2005) MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol 5:201–214CrossRefGoogle Scholar
  5. 5.
    Parham P, Norman PJ, Abi-Rached L et al (2012) Human-specific evolution of killer cell immunoglobulin-like receptor recognition of major histocompatibility complex class I molecules. Philos Trans R Soc Lond B Biol Sci 367:800–811CrossRefGoogle Scholar
  6. 6.
    Wende H, Colonna M, Ziegler A et al (1999) Organization of the leukocyte receptor cluster (LRC) on human chromosome 19q13.4. Mamm Genome 10:154–160CrossRefGoogle Scholar
  7. 7.
    Biassoni R, Ugolotti E, De Maria A (2010) Comparative analysis of NK cell receptor expression and function across primate species: perspective on antiviral defenses. Self Nonself 1:103–113CrossRefGoogle Scholar
  8. 8.
    Biassoni R, Malnati MS (2018) Human natural killer receptors, co-receptors, and their ligands. Curr Protoc Immunol 121(1):e47CrossRefGoogle Scholar
  9. 9.
    Middleton D, Faviel G (2009) The extensive polymorphism of KIR genes. Immunol 129:8–19CrossRefGoogle Scholar
  10. 10.
    Pyo C, Guethlein LA, Vu Q et al (2010) Different patterns of evolution in the centromeric and telomeric regions of group A and B haplotypes of the human killer cell Ig-like receptor locus. PLoS One 5:e15115CrossRefGoogle Scholar
  11. 11.
    Bashirova AA, Martin MP, McVicar DW, Carrington M (2006) The killer immunoglobulin-like receptor gene cluster: tuning the genome for defense. Annu Rev Genomics Hum Genet 7:277–300CrossRefGoogle Scholar
  12. 12.
    Snary D, Barnstable CJ, Bodmer WF, Crumpton MJ (1977) Molecular structure of human histocompatibility antigens: the HLA-C series. Eur J Immunol 7:580–585CrossRefGoogle Scholar
  13. 13.
    Zemmour J, Parham P (1992) Distinctive polymorphism at the HLA-C locus: implications for the expression of HLA-C. J Exp Med 176:937–950CrossRefGoogle Scholar
  14. 14.
    Apps R, Meng Z, Del Prete GQ et al (2015) Relative expression levels of the HLA class-I proteins in normal and HIV-infected cells. J Immunol 194:3594–3600CrossRefGoogle Scholar
  15. 15.
    App R, Qi Y, Carlson JM et al (2013) Influence of HLA-C expression level on HIV control. Science 340:87–91CrossRefGoogle Scholar
  16. 16.
    Kulkarni S, Qi Y, O’huigin C et al (2013) Genetic interplay between HLA-C and MIR148A in HIV control and Crohn disease. Proc Natl Acad Sci U S A 110:20705–20710CrossRefGoogle Scholar
  17. 17.
    Fellay J, Shianna KV, Ge D et al (2007) A whole-genome association study of major determinants for host control of HIV-1. Science 317:944–947CrossRefGoogle Scholar
  18. 18.
    Kulkarni S, Savan R, Qi Y et al (2011) Differential microRNA regulation of HLA-C expression and its association with HIV control. Nature 472:495–498CrossRefGoogle Scholar
  19. 19.
    Thomas R, Apps R, Qi Y et al (2009) HLA-C cell surface expression and control of HIV/AIDS correlate with a variant upstream of HLA-C. Nat Genet 41:1290–1294CrossRefGoogle Scholar
  20. 20.
    Blais ME, Zhang Y, Rostron T et al (2012) High frequency of HIV mutations associated with HLA-C suggests enhanced HLA-C-restricted CTL selective pressure associated with an AIDS-protective polymorphism. J Immunol 188:4663–4670CrossRefGoogle Scholar
  21. 21.
    Apps R, Del Prete GQ, Chatterjee P et al (2016) HIV-1 Vpu mediates HLA-C downregulation. Cell Host Microbe 19:686–695CrossRefGoogle Scholar
  22. 22.
    Majorczyk E, Matusiak L, Nowak I et al (2014) A single nucleotide polymorphism -35 kb T > C (rs9264942) is strongly associated with psoriasis vulgaris depending on HLA-Cw/06. Hum Immunol 75:504–507CrossRefGoogle Scholar
  23. 23.
    Petersdorf EW, Gooley TA, Malkki M et al (2014) HLA-C expression levels define permissible mismatches in hematopoietic cell transplantation. Blood 124:3996–4003CrossRefGoogle Scholar
  24. 24.
    O’h Uigin C, Kulkarni S, Xu Y et al (2011) The molecular origin and consequences of escape from miRNA regulation by HLA-C alleles. Am J Hum Genet 89:424–431CrossRefGoogle Scholar
  25. 25.
    Sibilio L, Martayan A, Setini A et al (2008) A single bottleneck in HLA-C assembly. J Biol Chem 283:1267–1274CrossRefGoogle Scholar
  26. 26.
    Kaur G, Gras S, Mobbs JI et al (2017) Structural and regulatory diversity shape HLA-C protein expression levels. Nat Commun 8:15924CrossRefGoogle Scholar
  27. 27.
    Malnati MS, Scarlatti G, Gatto F et al (2008) A universal real-time PCR assay for the quantification of group-M HIV-1 proviral load. Nat Protoc 3:1240–1248CrossRefGoogle Scholar
  28. 28.
    Biswas P, Ugolotti B, Di Marco E et al A fast and reliable method for detecting SNP rs67384697 (miRNA 148a binding site) by a single run of allele-specific real-time PCR. Submitted for publicationGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Priscilla Biswas
    • 1
  • Eddi Di Marco
    • 2
  • Mauro S. Malnati
    • 1
    Email author
  1. 1.Unit of Human Virology, Division of Immunology, Transplantation and Infectious DiseasesIRCCS Ospedale San RaffaeleMilanItaly
  2. 2.IRCCS Istituto Giannina GasliniGenoaItaly

Personalised recommendations