Advertisement

MIQE-Compliant Validation of MicroRNA Biomarker Signatures Established by Small RNA Sequencing

  • Veronika Mussack
  • Stefanie Hermann
  • Dominik Buschmann
  • Benedikt Kirchner
  • Michael W. PfafflEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2065)

Abstract

MicroRNAs (miRNAs), a class of small non-coding RNAs that modulate gene expression at the post-transcriptional level, are attractive targets in many academic and diagnostic applications. Among them, assessing miRNA biomarkers in minimally invasive liquid biopsies was shown to be a promising tool for managing diseases, particularly cancer. The initial screening of disease-relevant transcripts is often performed by high-throughput next-generation sequencing (NGS), in here RNA sequencing (RNA-Seq). After complex processing of small RNA-Seq data, differential gene expression analysis is performed to evaluate miRNA biomarker signatures. To ensure experimental validity, biomarker candidates are commonly validated by an orthogonal technology such as reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR). This chapter outlines in detail the material and methods one can apply to reproducibly identify miRNA biomarker signatures from blood total RNA. After screening miRNA profiles by small RNA-Seq, resulting data is validated in compliance with the “Minimum Information for Publication of Quantitative Real-Time PCR Experiments” (MIQE) guidelines.

Key words

microRNA Small RNA sequencing Biomarker MIQE RT-qPCR NGS RNA-Seq Normalization Validation Standardization 

References

  1. 1.
    Buschmann D, Haberberger A, Kirchner B et al (2016) Toward reliable biomarker signatures in the age of liquid biopsies - how to standardize the small RNA-Seq workflow. Nucleic Acids Res 44:5995–6018.  https://doi.org/10.1093/nar/gkw545CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Pfaffl MW (2013) Transcriptional biomarkers. Methods 59:1–2.  https://doi.org/10.1016/j.ymeth.2012.12.011CrossRefPubMedGoogle Scholar
  3. 3.
    Strimbu K, Tavel JA (2010) What are biomarkers? Curr Opin HIV AIDS 5(6):463–466.  https://doi.org/10.1097/COH.0b013e32833ed177CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wang J, Chen J, Sen S (2016) MicroRNA as biomarkers and diagnostics. J Cell Physiol 231(1):25–30.  https://doi.org/10.1002/jcp.25056CrossRefPubMedGoogle Scholar
  5. 5.
    Ghai V, Wang K (2016) Recent progress toward the use of circulating microRNAs as clinical biomarkers. Arch Toxicol 90(12):2959–2978.  https://doi.org/10.1007/s00204-016-1828-2CrossRefPubMedGoogle Scholar
  6. 6.
    Arneth B (2018) Update on the types and usage of liquid biopsies in the clinical setting: a systematic review. BMC Cancer 18(1):527.  https://doi.org/10.1186/s12885-018-4433-3CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Reithmair M, Buschmann D, Marte M et al (2017) Cellular and extracellular miRNAs are blood-compartment-specific diagnostic targets in sepsis. J Cell Mol Med 21:2403.  https://doi.org/10.1111/jcmm.13162CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gibson U, Heid A, Williams P (1996) A novel method for real time quantitative RT-PCR. Genome Res 6:995–1001CrossRefGoogle Scholar
  9. 9.
    Morrison T, Weiss J, Wittwer C (1998) Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. BioTechniques 24:954–962PubMedGoogle Scholar
  10. 10.
    Arya M, Shergill IS, Williamson M et al (2005) Basic principles of real-time quantitative PCR. Expert Rev Mol Diagn 5:209–219.  https://doi.org/10.1586/14737159.5.2.209CrossRefPubMedGoogle Scholar
  11. 11.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408.  https://doi.org/10.1006/meth.2001.1262CrossRefGoogle Scholar
  12. 12.
    Bustin SA, Benes V, Garson JA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622.  https://doi.org/10.1373/clinchem.2008.112797CrossRefPubMedGoogle Scholar
  13. 13.
    R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/Google Scholar
  14. 14.
    Schroeder A, Mueller O, Stocker S et al (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7:3.  https://doi.org/10.1186/1471-2199-7-3CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kong Y (2011) Btrim: a fast, lightweight adapter and quality trimming program for next-generation sequencing technologies. Genomics 98(2):152–153.  https://doi.org/10.1016/j.ygeno.2011.05.009CrossRefPubMedGoogle Scholar
  16. 16.
    Andrews S (2010) FastQC: a quality control tool for high throughput sequence dataGoogle Scholar
  17. 17.
    Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42(Database issue):D68–D73.  https://doi.org/10.1093/nar/gkt1181CrossRefPubMedGoogle Scholar
  18. 18.
    Langmead B, Trapnell C, Pop M et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25.  https://doi.org/10.1186/gb-2009-10-3-r25CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079.  https://doi.org/10.1093/bioinformatics/btp352CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Love MI, Huber W et al (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550.  https://doi.org/10.1186/s13059-014-0550-8CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Vandesompele J, De Preter K, Pattyn F et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034CrossRefGoogle Scholar
  22. 22.
    Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64(15):5245–5250.  https://doi.org/10.1158/0008-5472.CAN-04-0496CrossRefPubMedGoogle Scholar
  23. 23.
    Pfaffl MW, Tichopad A, Prgomet C et al (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—excel-based tool using pair-wise correlations. Biotechnol Lett 26(6):509–515CrossRefGoogle Scholar
  24. 24.
    Lu J, Getz G, Miska EA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838.  https://doi.org/10.1038/nature03702CrossRefPubMedGoogle Scholar
  25. 25.
    Volinia S, Calin GA, Liu CG et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103:2257–2261.  https://doi.org/10.1073/pnas.0510565103CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Burns MJ, Nixon GJ, Foy CA (2005) Standardisation of data from real-time quantitative PCR methods - evaluation of outliers and comparison of calibration curves. BMC Biotechnol 5:31.  https://doi.org/10.1186/1472-6750-5-31CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Komsta L (2011) Outliers: tests for outliers, R package version 0.14. https://CRAN.R-project.org/package=outliersGoogle Scholar
  28. 28.
    Millard SP (2013) EnvStats: an R package for environmental statistics. Springer, New YorkCrossRefGoogle Scholar
  29. 29.
    Kaur H, Arora A, Wengel J (2006) Thermodynamic, counterion, and hydration effects for the incorporation of locked nucleic acid nucleotides into DNA duplexes. Biochemistry 45:7347–7355.  https://doi.org/10.1021/bi060307wCrossRefPubMedGoogle Scholar
  30. 30.
    Schrader C, Schielke A, Ellerbroek L et al (2012) PCR inhibitors - occurrence, properties and removal. J Appl Microbiol 113:1014–1026.  https://doi.org/10.1111/j.1365-2672.2012.05384.xCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Veronika Mussack
    • 1
  • Stefanie Hermann
    • 1
  • Dominik Buschmann
    • 1
  • Benedikt Kirchner
    • 1
  • Michael W. Pfaffl
    • 1
    Email author
  1. 1.Animal Physiology and Immunology, School of Life Sciences WeihenstephanTechnical University of MunichMunichGermany

Personalised recommendations