Skip to main content

Purification of Endogenous Tagged TRAMP4/5 and Exosome Complexes from Yeast and In Vitro Polyadenylation-Exosome Activation Assays

  • Protocol
  • First Online:
The Eukaryotic RNA Exosome

Abstract

The RNA exosome processes a wide variety of RNA and mediates RNA maturation, quality control and decay. In marked contrast to its high processivity in vivo, the purified exosome exhibits only weak activity on RNA substrates in vitro. Its activity is regulated by several auxiliary proteins, and protein complexes. In budding yeast, the activity of exosome is enhanced by the polyadenylation complex referred to as TRAMP. TRAMP oligoadenylates precursors and aberrant forms of RNAs to promote their trimming or complete degradation by exosomes. This chapter provides protocols for the purification of TRAMP and exosome complexes from yeast and the in vitro evaluation of exosome activation by the TRAMP complex. The protocols can be used for different purposes, such as the assessment of the role of individual subunits, protein domains or particular mutations in TRAMP-exosome RNA processing in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mitchell P et al (1997) The exosome: a conserved eukaryotic RNA processing complex containing multiple 3'-->5' exoribonucleases. Cell 91(4):457–466

    Article  CAS  PubMed  Google Scholar 

  2. Callahan KP, Butler JS (2010) TRAMP complex enhances RNA degradation by the nuclear exosome component Rrp6. J Biol Chem 285(6):3540–3547

    Article  CAS  PubMed  Google Scholar 

  3. Vasiljeva L, Buratowski S (2006) Nrd1 interacts with the nuclear exosome for 3' processing of RNA polymerase II transcripts. Mol Cell 21(2):239–248

    Article  CAS  PubMed  Google Scholar 

  4. Vanacova S et al (2005) A new yeast poly(A) polymerase complex involved in RNA quality control. PLoS Biol 3(6):e189

    Article  PubMed  Google Scholar 

  5. LaCava J et al (2005) RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 121(5):713–724

    Article  CAS  PubMed  Google Scholar 

  6. Wyers F et al (2005) Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 121(5):725–737

    Article  CAS  PubMed  Google Scholar 

  7. Thiebaut M et al (2006) Transcription termination and nuclear degradation of cryptic unstable transcripts: a role for the nrd1-nab3 pathway in genome surveillance. Mol Cell 23(6):853–864

    Article  CAS  PubMed  Google Scholar 

  8. Lubas M et al (2011) Interaction profiling identifies the human nuclear exosome targeting complex. Mol Cell 43(4):624–637

    Article  CAS  PubMed  Google Scholar 

  9. Hrossova D et al (2015) RBM7 subunit of the NEXT complex binds U-rich sequences and targets 3'-end extended forms of snRNAs. Nucleic Acids Res 43(8):4236–4248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Arigo JT et al (2006) Termination of cryptic unstable transcripts is directed by yeast RNA-binding proteins Nrd1 and Nab3. Mol Cell 23(6):841–851

    Article  CAS  PubMed  Google Scholar 

  11. Carroll KL et al (2004) Identification of cis elements directing termination of yeast nonpolyadenylated snoRNA transcripts. Mol Cell Biol 24(14):6241–6252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Steinmetz EJ et al (2001) RNA-binding protein Nrd1 directs poly(A)-independent 3'-end formation of RNA polymerase II transcripts. Nature 413(6853):327–331

    Article  CAS  PubMed  Google Scholar 

  13. Egecioglu DE, Henras AK, Chanfreau GF (2006) Contributions of Trf4p- and Trf5p-dependent polyadenylation to the processing and degradative functions of the yeast nuclear exosome. RNA 12(1):26–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Halbach F, Rode M, Conti E (2012) The crystal structure of S. cerevisiae Ski2, a DExH helicase associated with the cytoplasmic functions of the exosome. RNA 18(1):124–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Weir JR et al (2010) Structural analysis reveals the characteristic features of Mtr4, a DExH helicase involved in nuclear RNA processing and surveillance. Proc Natl Acad Sci U S A 107(27):12139–12144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Holub P et al (2012) Air2p is critical for the assembly and RNA-binding of the TRAMP complex and the KOW domain of Mtr4p is crucial for exosome activation. Nucleic Acids Res 40(12):5679–5693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Weick EM et al (2018) Helicase-Dependent RNA Decay Illuminated by a Cryo-EM Structure of a Human Nuclear RNA Exosome-MTR4 Complex. Cell 173(7):1663–1677. e21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fan J et al (2017) Exosome cofactor hMTR4 competes with export adaptor ALYREF to ensure balanced nuclear RNA pools for degradation and export. EMBO J 36(19):2870–2886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vanacova S, Stefl R (2007) The exosome and RNA quality control in the nucleus. EMBO Rep 8(7):651–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Haracska L et al (2005) Trf4 and Trf5 proteins of Saccharomyces cerevisiae exhibit poly(A) RNA polymerase activity but no DNA polymerase activity. Mol Cell Biol 25(22):10183–10189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hamill S, Wolin SL, Reinisch KM (2010) Structure and function of the polymerase core of TRAMP, a RNA surveillance complex. Proc Natl Acad Sci U S A 107(34):15045–15050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fasken MB et al (2011) Air1 zinc knuckles 4 and 5 and a conserved IWRXY motif are critical for the function and integrity of the Trf4/5-Air1/2-Mtr4 polyadenylation (TRAMP) RNA quality control complex. J Biol Chem 286(43):37429–37445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kadaba S et al (2004) Nuclear surveillance and degradation of hypomodified initiator tRNAMet in S. cerevisiae. Genes Dev 18(11):1227–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kadaba S, Wang X, Anderson JT (2006) Nuclear RNA surveillance in Saccharomyces cerevisiae: Trf4p-dependent polyadenylation of nascent hypomethylated tRNA and an aberrant form of 5S rRNA. RNA 12(3):508–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kapust RB et al (2001) Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Protein Eng 14(12):993–1000

    Article  CAS  PubMed  Google Scholar 

  26. Lucast LJ, Batey RT, Doudna JA (2001) Large-scale purification of a stable form of recombinant tobacco etch virus protease. Biotechniques 30(3):544–546. 548, 550 passim

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Czech Science Foundation [16-21341S and 17-20388S], and by the Ministry of Education, Youth and Sports of the Czech Republic under the project CEITEC 2020 (LQ1601).

Authors’ Contributions: SV wrote the manuscript and acquired funding, DZ prepared illustrations and helped with text editing, VR reproduced and troubleshot the protocol and helped with the text editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Štěpánka Vaňáčová .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zigáčková, D., Rájecká, V., Vaňáčová, Š. (2020). Purification of Endogenous Tagged TRAMP4/5 and Exosome Complexes from Yeast and In Vitro Polyadenylation-Exosome Activation Assays. In: LaCava, J., Vaňáčová, Š. (eds) The Eukaryotic RNA Exosome. Methods in Molecular Biology, vol 2062. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9822-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9822-7_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9821-0

  • Online ISBN: 978-1-4939-9822-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics