Plant Meiosis pp 347-358 | Cite as

Analysis of Pollen Grains by Immunostaining and FISH in Triticeae Species

  • Dan D. Wu
  • Alevtina Ruban
  • Twan Rutten
  • Yong H. Zhou
  • Andreas HoubenEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2061)


In this chapter we describe protocols for immunolabeling and FISH of pollen grains undergoing postmeiotic mitosis using Aegilops speltoides, Secale cereale, and Hordeum vulgare as models. Tissue sectioning of pollen overcomes the problem of the pollen grain wall impermeability that interferes with immunolocalization and in situ hybridization. The crucial element of the protocol is the generation and immobilization of tissue sections. Our method facilitates the investigation of the microspore cell divisions and pollen grain maturation.

Key words

Aegilops speltoides Hordeum vulgare Secale cereale Pollen mitosis Tissue section Immunostaining FISH Meiosis 



We thank the Deutsche Forschungsgemeinschaft DFG (Ho1779/26-1, 30-1) and the China Scholarship Council (CSC, 201606910015) for financial support.


  1. 1.
    Tanaka I (1997) Differentiation of generative and vegetative cells in angiosperm pollen. Sex Plant Reprod 10:1–7CrossRefGoogle Scholar
  2. 2.
    Borg M, Brownfield L, Twell D (2009) Male gametophyte development: a molecular perspective. J Exp Bot 60:1465–1478CrossRefGoogle Scholar
  3. 3.
    Honys D, Twell D (2003) Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol 132:640–652CrossRefGoogle Scholar
  4. 4.
    Terasaka O, Tanaka R (1974) Cytological studies on the nuclear differentiation in microspore division of some angiosperms. Bot Mag Tokyo 87:209–217CrossRefGoogle Scholar
  5. 5.
    Houben A, Kumke K, Nagaki K, Hause G (2011) CENH3 distribution and differential chromatin modifications during pollen development in rye (Secale cereale L.). Chromosome Res 19:471–480Google Scholar
  6. 6.
    Banaei-Moghaddam AM, Schubert V, Kumke K, Weibeta O, Klemme S, Nagaki K, Macas J, Gonzalez-Sanchez M, Heredia V, Gomez-Revilla D, Gonzalez-Garcia M, Vega JM, Puertas MJ, Houben A (2012) Nondisjunction in favor of a chromosome: the mechanism of rye B chromosome drive during pollen mitosis. Plant Cell 24:4124–4134CrossRefGoogle Scholar
  7. 7.
    Pandey P, Daghma DS, Houben A, Kumlehn J, Melzer M, Rutten T (2017) Dynamics of post-translationally modified histones during barley pollen embryogenesis in the presence or absence of the epi-drug trichostatin A. Plant Reprod 30:95–105CrossRefGoogle Scholar
  8. 8.
    Pandey P, Houben A, Kumlehn J, Melzer M, Rutten T (2013) Chromatin alterations during pollen development in Hordeum vulgare. Cytogenet Genome Res 141:50–57Google Scholar
  9. 9.
    Sanei M, Pickering R, Kumke K, Nasuda S, Houben A (2011) Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proc Natl Acad Sci 108:E498–E505CrossRefGoogle Scholar
  10. 10.
    Kumlehn J, Serazetdinova L, Hensel G, Becker D, Loerz H (2006) Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens. Plant Biotechnol J 4:251–261Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Dan D. Wu
    • 1
    • 2
  • Alevtina Ruban
    • 1
  • Twan Rutten
    • 1
  • Yong H. Zhou
    • 2
  • Andreas Houben
    • 1
    Email author
  1. 1.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Stadt SeelandGermany
  2. 2.Triticeae Research InstituteSichuan Agricultural UniversityWenjiangChina

Personalised recommendations