Advertisement

Plant Meiosis pp 303-318 | Cite as

Identifying and Isolating Meiotic Mutants in a Polyploid Brassica Crop

  • Marina Pfalz
  • Adrián Gonzalo
  • Nicolas Christophorou
  • Aurélien Blary
  • Aurélie Berard
  • Nadia Bessoltane
  • Emilie Montes
  • Lydia Jaffrelo
  • Charles Poncet
  • Marie-Christine Le Paslier
  • Nathalie Nesi
  • Delphine Charif
  • Eric JenczewskiEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2061)

Abstract

This chapter provides a detailed description of TILLING and CRISPR-Cas9 approaches for the purpose of studying genes/factors involved in meiotic recombination in the polyploid species B. napus. The TILLING approach involves the screening and identification of EMS-mutagenized M2 B. napus plants. The strategy for high-throughput plant pooling, the set up for microfluidic PCR and sequencing is provided and the parameters for the analysis of sequence results and the detection of mutants are explained. The CRISPR-Cas system relies on the optimal design of guide RNAs and their efficient expression. The procedure for the generation and detection of knockout mutants is described with the aims to simultaneously target homologous genes.

Key words

Brassica napus Gene editing Meiotic recombination Microfluidic PCR Polyploidy Reverse genetics Targeting induced local lesions in genomes 

Notes

Acknowledgments

This work has benefited from a French State grant (reference ANR-10-LABX-0040-SPS) managed by the French National Research Agency under an Investments for the Future program (reference n°ANR-11-IDEX-0003-02). It has also been funded through the ANR project ANR-14-CE19-0004—CROC and with the support of INRA BAP division (Appel à Manifestation d’intérêt 2012; HyperRec). We also want to acknowledge CEA-IbFJ-Genoscope that gave EPGV group access to their Illumina sequencing resources as well as Isabelle Le Clainche, Aurélie Chauveau, Elodie Marquand and Aurélie Canaguier. A.B. was funded by a “Young Scientist Contracts” (CJS) from INRA. A.G. was funded by the Marie-Curie “COMREC” network FP7 ITN-606956.

References

  1. 1.
    Tsai H, Howell T, Nitcher R, Missirian V, Watson B, Ngo KJ, Lieberman M, Fass J, Uauy C, Tran RK, Khan AA, Filkov V, Tai TH, Dubcovsky J, Comai L (2011) Discovery of rare mutations in populations: TILLING by sequencing. Plant Physiol 156:1257–1268CrossRefGoogle Scholar
  2. 2.
    Henikoff S, Till BJ, Comai L (2004) TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol 135:630–636CrossRefGoogle Scholar
  3. 3.
    Blary A, Gonzalo A, Eber F, Bérard A, Bergès H, Bessoltane N, Charif D, Charpentier C, Cromer L, Fourment J, Genevriez C, Le Paslier MC, Lode M, Lucas MO, Nesi N, Lloyd A, Chèvre AM, Jenczewski E (2018) FANCM limits meiotic crossovers in Brassica crops. Front Plant Sci 9:368CrossRefGoogle Scholar
  4. 4.
    Schiml S and Puchta H (2016) Revolutionizing plant biology: multiple ways of genome engineering by CRISPR/Cas Plant Methods 12:8Google Scholar
  5. 5.
    Yang H, Wu JJ, Tang R, Liu KD, Dai C (2017) CRISPR/Cas9-mediated genome editing efficiently creates specific mutations at multiple loci using one sgRNA in Brassica napus. Sci Rep 7:7489CrossRefGoogle Scholar
  6. 6.
    Braatz J, Harloff HJ, Mascher M, Stein N, Himmelbach A, Jung C (2017) CRISPR-Cas9 target mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploidy oilseed rape (Brassica napus). Plant Physiol 174:935–942CrossRefGoogle Scholar
  7. 7.
    Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of agrobacterium binary vector. Mol Gen Genet 204:383–396CrossRefGoogle Scholar
  8. 8.
    Bertani G (1951) Studies on lysogenesis I.: the mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293–300PubMedPubMedCentralGoogle Scholar
  9. 9.
    Sparrow PAC, Dale PJ, Snape JW, Irwin JA (2006) The use of phenotypic markers to identify Brassica genotypes for routine high throughput agrobacterium-mediated transformation. Acta Hort (706):239–246Google Scholar
  10. 10.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  11. 11.
    Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158CrossRefGoogle Scholar
  12. 12.
    Gilchrist EJ, Sidebottom CHD, Koh CS, MacInnes T, Sharpe AG, Haughn GW (2013) A mutant Brassica napus (canola) population for the identification of new genetic diversity via TILLING and next generation sequencing. PLoS One 8:e84303CrossRefGoogle Scholar
  13. 13.
    Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218CrossRefGoogle Scholar
  14. 14.
    Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X et al (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950CrossRefGoogle Scholar
  15. 15.
    Fauser F, Schiml S, Puchta H (2014) Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J 79:348–359CrossRefGoogle Scholar
  16. 16.
    Moloney MM, Walker JM, Sharma KK (1989) High-efficiency transformation of Brassica napus using agrobacterium vectors. Plant Cell Rep 8:238–242CrossRefGoogle Scholar
  17. 17.
    Sparrow PAC, Dale J, Irwin JA (2004) The use of phenotypic markers to identify Brassica oleracea genotypes for routine high-throughput agrobacterium-mediated transformation. Plant Cell Rep 23:64–70CrossRefGoogle Scholar
  18. 18.
    Cronn R, Cedroni M, Haselkorn T, Grover C, Wendel J (2002) PCR-mediated recombination in amplification products derived from polyploid cotton. Theor Appl Genet 104:482–489CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Marina Pfalz
    • 1
  • Adrián Gonzalo
    • 1
  • Nicolas Christophorou
    • 1
  • Aurélien Blary
    • 1
  • Aurélie Berard
    • 2
  • Nadia Bessoltane
    • 1
  • Emilie Montes
    • 3
  • Lydia Jaffrelo
    • 4
  • Charles Poncet
    • 4
  • Marie-Christine Le Paslier
    • 2
  • Nathalie Nesi
    • 3
  • Delphine Charif
    • 1
  • Eric Jenczewski
    • 1
    Email author
  1. 1.Institut Jean-Pierre BourginINRA, AgroParisTech, CNRS, Université Paris-SaclayVersaillesFrance
  2. 2.Etude du Polymorphisme des Génomes Végétaux (EPGV)INRA, Université Paris-SaclayEvryFrance
  3. 3.IGEPP, INRA, Agrocampus Ouest, Université de RennesLe RheuFrance
  4. 4.GDEC, INRA, Université Clermont AuvergneClermont-FerrandFrance

Personalised recommendations