Advertisement

Plant Meiosis pp 181-196 | Cite as

Surface Spreading Technique in Plant Meiocytes for Analysis of Synaptonemal Complex by Electron Microscopy

  • Nieves CuñadoEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2061)

Abstract

An improved method of preparing two-dimensional surface spreads of synaptonemal complexes (SCs) in higher plants for examination by electron microscopy is described. This protocol produces clear, well-spread preparations of SCs and unpaired axial cores from a range of meiotic prophase I stages (leptotene to pachytene) from meiocytes of different plant species. Synaptonemal complex (SC) analyses have been widely used in plant cytogenetic studies to address the process of meiotic chromosome synapses, because of the high-resolution allowed by electron microscopy. Although the real role of SC is still enigmatic, its presence and structural conservation in the vast majority of organisms reflect the importance of this protein structure in the meiotic process.

Key words

Meiosis Synaptonemal complex Surface spreading Silver staining Electron microscopy 

Notes

Acknowledgments

The author is very grateful for the contributions to synaptonemal complex research from former and current lab members, especially Juan Luís Santos and Mónica Pradillo. The author’s research has been supported by several grants from the Ministerio de Ciencia, Innovación y Universidades of Spain and the Universidad Complutense de Madrid-Banco Santander of Spain (Grant number 910452).

References

  1. 1.
    Cuñado N, Callejas S, García MJ, Fernández A, Santos JL (1996) The pattern of zygotene and pachytene pairing in allotetraploid Aegilops species sharing the U genome. Theor Appl Genet 93:1152–1155CrossRefGoogle Scholar
  2. 2.
    Cuñado N, García MJ, Callejas S, Fernández A, Santos JL (1996) The pattern of zygotene and pachytene pairing in allotetraploid Aegilops species sharing the D genome. Theor Appl Genet 93:1175–1179CrossRefGoogle Scholar
  3. 3.
    López E, Pradillo M, Romero C, Santos JL, Cuñado N (2008) Pairing and synapsis in wild type Arabidopsis thaliana. Chromosom Res 16:701–708CrossRefGoogle Scholar
  4. 4.
    Gillies CB (1981) Electron microscopy of spread maize pachytene synaptonemal complex. Chromosoma 83:571–591CrossRefGoogle Scholar
  5. 5.
    Stack S (1982) Two-dimensional spreads of synaptonemal complexes from solanaceous plants. I the technique. Stain Technol 57:265–272CrossRefGoogle Scholar
  6. 6.
    Albini SM, Jones GH, Wallace BM (1984) A method for preparing two-dimensional surface-spreads of synaptonemal complexes from plant meiocytes for light and electron microscopy. Exp Cell Res 152:280–285CrossRefGoogle Scholar
  7. 7.
    Loidl J, Jones GH (1986) Synaptonemal complex spreading in Allium I. Triploid A Sphaerocephalon. Chromosoma 93:420–428CrossRefGoogle Scholar
  8. 8.
    Stack S, Herickhoff L, Sherman J, Anderson L (1991) Staining plant-cells with silver.1. The salt-nylon technique. Biotech Histochem 66:69–78.  https://doi.org/10.3109/10520299109110553CrossRefGoogle Scholar
  9. 9.
    Moses MJ (1956) Chromosomal structures in crayfish spermatocytea. J Biophys Biochem Cytol 2:215–218CrossRefGoogle Scholar
  10. 10.
    Moses MJ (1958) The relation between the axial complex of meiotic prophase chromosomes and chromosome pairing in salamander (Plethodon cinereus). J Biophys Biochem Cytol 4:633–638CrossRefGoogle Scholar
  11. 11.
    Von Wettstein D, Rasmussen SW, Helm PB (1984) The synaptonemal complex in genetic segregation. Annu Rev Genet 18:331–413CrossRefGoogle Scholar
  12. 12.
    Heyting C (1996) Synaptonemal complexes: structure and function. Curr Opin Cell Biol 8:389–396CrossRefGoogle Scholar
  13. 13.
    Zickler D, Kleckner N (1999) Meiotic chromosomes: integrating structure and function. Annu Rev Genet 33:603–754CrossRefGoogle Scholar
  14. 14.
    Albini SM, Jones GH (1987) Synaptonemal complex spreading in Allium cepa and A. fistulosum I. The initiation and sequence of pairing. Chromosoma 95:329–338CrossRefGoogle Scholar
  15. 15.
    Page SL, Hawley RS (2004) The genetics and molecular biology of the synaptonemal complex. Annu Rev Cell Dev Biol 20:525–558CrossRefGoogle Scholar
  16. 16.
    Caryl AP, Armstrong SJ, Jones GH, Franklin FCH (2000) A homologue of the yeast HOP1 gene is inactivated in the Arabidopsis meiotic mutant asy1. Chromosoma 109:62–71CrossRefGoogle Scholar
  17. 17.
    Armstrong SJ, Caryl AP, Jones GH, Franklin FC (2002) Asy1, a protein required for meiotic chromosome synapsis, localizes to axis-associated chromatin in Arabidopsis and Brassica. J Cell Sci 115:3645–3655CrossRefGoogle Scholar
  18. 18.
    Wang KJ, Wang M, Tang D, Shen Y, Qin BX et al (2011) PAIR3, an axis associated protein, is essential for the recruitment of recombination elements onto meiotic chromosomes in rice. Mol Biol Cell 22:12–19CrossRefGoogle Scholar
  19. 19.
    Ferdous M, Higgins JD, Osman K, Lambing C, Roitinger E, Mechtler K, Armstrong SJ, Perry R, Pradillo M, Cuñado N, Franklin FCH (2012) Inter-homolog recombination and synapsis in Arabidopsis meiosis is dependent on the chromosome axis protein AtASY3. PLoS Genet 8:e1002507CrossRefGoogle Scholar
  20. 20.
    Higgins JD, Sánchez-Morán E, Armstrong SJ, Jones GH, Franklin FCH (2005) The Arabidopsis synaptonemal complex protein ZYP1 is required for chromosome synapsis and normal fidelity of crossing over. Genes Dev 19:2488–2500CrossRefGoogle Scholar
  21. 21.
    Wang M, Wang KJ, Tang D, Wei CX, Li M et al (2010) The central element protein ZEP1 of the synaptonemal complex regulates the number of crossovers during meiosis in rice. Plant Cell 22:417–430CrossRefGoogle Scholar
  22. 22.
    Golubovskaya IN, Wang CJR, Timofejeva L, Cande WZ (2011) Maize meiotic mutants with improper or non-homologous synapsis due to problems in pairing or synaptonemal complex formation. J Exp Bot 62:1533–1544CrossRefGoogle Scholar
  23. 23.
    Khoo KHP, Able AJ, Able JA (2012) The isolation and characterisation of the wheat molecular ZIPper I homologue, Ta ZYP1. BMC Res Notes 5:106CrossRefGoogle Scholar
  24. 24.
    Barakate A, Higgins JD, Vivera S, Stephens J, Perry RM, Ramsay L, Colas I, Oakey H, Waugh R, Franklin FCH, Armstrong SJ, Halpin C (2014) The synaptonemal complex protein ZYP1 is required for imposition of meiotic crossovers in barley. Plant Cell 26:729–740CrossRefGoogle Scholar
  25. 25.
    Gillies CB (1989) Chromosome pairing and fertility in polyploids. In: Gillies CB (ed) Fertility and chromosome pairing: recent studies in plants and animals. CRC Press, Boca Raton, pp 137–176Google Scholar
  26. 26.
    Santos JL, Cuadrado MC, Díez M, Romero C, Cuñado N, Naranjo T, Martínez M (1995) Further insights on chromosomal pairing of autopolyploids: a triploid and tetraploids of rye. Chromosoma 104:298–307CrossRefGoogle Scholar
  27. 27.
    Cuñado N, Santos JL (1999) On the diploidization mechanism of the genus Aegilops; meiotic behaviour of interspecific hybrids. Theor Appl Genet 99:1080–1086CrossRefGoogle Scholar
  28. 28.
    Cuñado N, de la Herrán R, Santos JL, Ruiz Rejón C, Garrido-Ramos MA, Ruiz Rejón M (2000) The evolution of the ribosomal loci in the subgenus Leopoldia of the genus Muscari (Hyacinthaceae). Plant Syst Evol 221:245–252CrossRefGoogle Scholar
  29. 29.
    Martínez M, Cuñado N, Carcelén N, Romero C (2001) The Ph1 and Ph2 loci play different roles in the synaptic behaviour of hexaploid wheat Triticum aestivum. Theor Appl Genet 103:398–405CrossRefGoogle Scholar
  30. 30.
    Cuñado N, Blázquez S, Melchor L, Pradillo M, Santos JL (2005) Understanding the cytological diploidization mechanism of polyploid wild wheats. Cytogenet Genome Res 109:205–209CrossRefGoogle Scholar
  31. 31.
    Cuñado N, Navajas-Pérez R, de la Herrán R, Ruiz Rejón C, Ruiz Rejón M, Santos JL, Garrido-Ramos MA (2007) The evolution of sex chromosomes in the genus Rumex (Polygonaceae): identification of a new species with heteromorphic sex chromosomes. Chromosom Res 15:825–832CrossRefGoogle Scholar
  32. 32.
    Pradillo M, López E, Romero C, Sánchez-Morán E, Cuñado N, Santos JL (2007) An analysis of univalent segregation in meiotic mutants of Arabidopsis thaliana: a possible role for synaptonemal complex. Genetics 175:505–511CrossRefGoogle Scholar
  33. 33.
    Grandont L, Cuñado N, Coriton O, Huteau V, Eber F, Chèvre AM, Grelon M, Chelysheva L, Jenczewski E (2014) Homeologous chromosome sorting and progression of meiotic recombination in Brassica napus: ploidy does matter! Plant Cell 26:1448–1463.  https://doi.org/10.1105/tpc.114.122788CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Departamento de Genética, Fisiología y Microbiología, Facultad de BiologíaUniversidad Complutense de MadridMadridSpain

Personalised recommendations