Plant Meiosis pp 169-180 | Cite as

Multicolored Fluorescent In Situ Hybridization to Assess Pairing Configurations at Metaphase I in Brassica Hybrids

  • Virginie Huteau
  • Olivier CoritonEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2061)


Genetic diversity can be introduced into polyploid crop species through meiotic recombination by exchanges between homologous or homoeologous chromosomes. Fluorescent in situ hybridization (FISH) enables the characterization of these homologous and homoeologous chromosome pairs during meiosis and identification of structural rearrangements during mitosis in metaphase I. In this chapter, we describe a protocol for the multicolored fluorescent labeling of chromosome spreads. This protocol allows the characterization of each A and C homoeologous subgenomes in a polyploid species using a genome-specific BAC combined with specific chromosome labeling BAC sequences.

Key words

Brassica species Chromosome Cytogenetics Meiosis Mitosis Fluorescence in situ hybridization 



We thank Anne-Marie Chèvre and Julie Ferreira-De-Carvalho for constructive reading of the manuscript.


  1. 1.
    Soltis DE, Visger CJ, Soltis PS (2014) The polyploidy revolution then … and now: Stebbins revisited. Am J Bot 101(7):1057–1078CrossRefGoogle Scholar
  2. 2.
    Nagaharu U (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and its peculiar mode of fertilization. Jap J Bot 7:389–452Google Scholar
  3. 3.
    Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11(11):535–542CrossRefGoogle Scholar
  4. 4.
    Lysak MA, Cheung K, Kitschke M, Bures P (2007) Ancestral chromosomal blocks are triplicated in Brassiceae species with varying chromosome number and genome size. Plant Physiol 145(2):402–410CrossRefGoogle Scholar
  5. 5.
    Leflon M, Brun H, Eber F et al (2007) Detection, introgression and localization of genes conferring specific resistance to Leptosphaeria maculans from Brassica rapa into B. napus. Theor Appl Genet 115:897–906CrossRefGoogle Scholar
  6. 6.
    Fredua-Agyeman R, Coriton O, Huteau V, Parkin IA, Chèvre AM, Rahman H (2014) Molecular cytogenetic identification of B genome chromosomes linked to blackleg disease resistance in Brassica napus × B. carinata interspecific hybrids. Theor Appl Genet 127(6):1305–1318CrossRefGoogle Scholar
  7. 7.
    Stein A, Coriton O, Rousseau-Gueutin M, Samans B, Obermeier C, Parkin I, Chevre A-M, Snowdon R (2017) Mapping of homoeologous chromosome exchanges influencing quantitative trait variation in Brassica napus. Plant Biotechnol J 15:1478–1849CrossRefGoogle Scholar
  8. 8.
    Mason AS, Chèvre AM (2016) Optimization of recombination in interspecific hybrids to introduce new genetic diversity into oilseed rape (Brassica napus L.). In: Mason AS (ed) Polyploidy and hybridization for crop improvement. Science Publishers, pp 431–444Google Scholar
  9. 9.
    Pelé A, Falque M, Trotoux G, Eber F, Nègre S, Gilet M, Huteau V, Lodé M, Jousseaume T, Dechaumet S, Morice J, Poncet C, Coriton O, Martin OC, Rousseau-Gueutin M, Chèvre AM (2017) Amplifying recombination genome-wide and reshaping crossover landscapes in Brassicas. PLoS Genet 13(5):e1006794CrossRefGoogle Scholar
  10. 10.
    Nicolas SD, Leflon M, Monod H, Eber F, Coriton O, Huteau V, Chèvre AM, Jenczewski E (2009) Genetic regulation of meiotic cross-overs between related genomes in Brassica napus haploids and hybrids. Plant Cell 21(2):373–385CrossRefGoogle Scholar
  11. 11.
    Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC (2007) Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell 19(11):3403–3417CrossRefGoogle Scholar
  12. 12.
    Rousseau-Gueutin M, Morice J, Coriton O, Huteau V, Trotoux G, Nègre S, Falentin C, Deniot G, Gilet M, Eber F, Pelé A, Vautrin S, Fourment J, Lodé M, Bergès H, Chèvre AM (2017) The impact of open pollination on the structural evolutionary dynamics, meiotic behavior and fertility of resynthesized allotetraploid Brassica napus L. G3 (Bethesda) 7(2):705–717CrossRefGoogle Scholar
  13. 13.
    Jenczewski E, Chèvre AM, Alix K (2013) Chromosomal and gene expression changes in Brassica allopolyploids. In: Chen ZJ, Birchler JA (eds) Polyploid and hybrid genomics. John Wiley & Sons, Inc., Oxford, pp 171–186CrossRefGoogle Scholar
  14. 14.
    Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh CS, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger PP, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier MC, Fan G, Renault V, Bayer PE, Golicz AA, Manoli S, Lee TH, Thi VH, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom CH, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim YP, Lyons E, Town CD, Bancroft I, Wang X, Meng J, Ma J, Pires JC, King GJ, Brunel D, Delourme R, Renard M, Aury JM, Adams KL, Batley J, Snowdon RJ, Tost J, Edwards D, Zhou Y, Hua W, Sharpe AG, Paterson AH, Guan C, Wincker P (2014) Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345(6199):950–953CrossRefGoogle Scholar
  15. 15.
    Suay L, Zhang D, Eber F, Jouy H, Lodé M, Huteau V, Coriton O, Szadkowski E, Leflon M, Martin OC, Falque M, Jenczewski E, Paillard S, Chèvre AM (2014) Crossover rate between homologous chromosomes and interference are regulated by the addition of specific unpaired chromosomes in Brassica. New Phytol 201(2):645–656CrossRefGoogle Scholar
  16. 16.
    Howell EC, Barker GC, Jones GH, Kearsey MJ, King GJ, Kop EP et al (2002) Integration of the cytogenetic and genetic linkage maps of Brassica oleracea. Genetics 161(3):1225–1234PubMedPubMedCentralGoogle Scholar
  17. 17.
    Mun JH, Kwon SJ, Yang TJ, Kim HS, Choi BS et al (2008) The first generation of a BAC-based physical map of Brassica rapa. BMC Genomics 9:280CrossRefGoogle Scholar
  18. 18.
    Xiong Z, Gaeta RT, Pires JC (2011) Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc Natl Acad Sci U S A 108(19):7908–7913CrossRefGoogle Scholar
  19. 19.
    Szadkowski E, Eber F, Huteau V, Lodé M, Huneau C, Belcram H, Coriton O, Manzanares-Dauleux MJ, Delourme R, King GJ, Chalhoub B, Jenczewski E, Chèvre AM (2010) The first meiosis of resynthesized Brassica napus, a genome blender. New Phytol 186(1):102–12Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Institut de Génétique, Environnement et Protection des PlantesINRA, UMR 1349 IGEPP, Molecular cytogenetics Platform, BP35327, F-35653Le Rheu CedexFrance

Personalised recommendations