Abstract
Extracellular vesicles (EVs) are secreted membrane vesicles, derived from endosomes or from the plasma membrane, which have been isolated from most cell types and biological fluids. Although EVs are highly heterogeneous and their classification is complex, two major categories can be distinguished: microvesicles (MVs), which derive from the shedding of the plasma membrane, and exosomes, which correspond to intraluminal vesicles released to the extracellular milieu upon fusion of multivesicular bodies (MVBs) with the plasma membrane. Cells infected with viruses may secrete MVs containing viral proteins, RNAs and, in some instances, infectious virions. A recent study carried out by our laboratory has shown that MVs released by cells infected with HSV-1 contained virions and were endocytosed by naïve cells leading to a productive infection. This suggests that HSV-1 may use MVs for spreading, expanding its tropism and evading the host immune response. Here we describe in detail the methods used to isolate and analyse the MVs released from HSV-1-infected cells.
Key words
- HSV-1
- Extracellular vesicles
- Microvesicles
- Differential centrifugation protocols
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Meldolesi J (2018) Exosomes and Ectosomes in intercellular communication. Curr Biol 28(8):R435–R444. https://doi.org/10.1016/j.cub.2018.01.059
Yañez-Mo M, Siljander PR, Andreu Z, Zavec AB, Borras FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J, Colas E, Cordeiro-da Silva A, Fais S, Falcon-Perez JM, Ghobrial IM, Giebel B, Gimona M, Graner M, Gursel I, Gursel M, Heegaard NH, Hendrix A, Kierulf P, Kokubun K, Kosanovic M, Kralj-Iglic V, Kramer-Albers EM, Laitinen S, Lasser C, Lener T, Ligeti E, Line A, Lipps G, Llorente A, Lotvall J, Mancek-Keber M, Marcilla A, Mittelbrunn M, Nazarenko I, Nolte-'t Hoen EN, Nyman TA, O'Driscoll L, Olivan M, Oliveira C, Pallinger E, Del Portillo HA, Reventos J, Rigau M, Rohde E, Sammar M, Sanchez-Madrid F, Santarem N, Schallmoser K, Ostenfeld MS, Stoorvogel W, Stukelj R, Van der Grein SG, Vasconcelos MH, Wauben MH, De Wever O (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:27066. https://doi.org/10.3402/jev.v4.27066
Wurdinger T, Gatson NN, Balaj L, Kaur B, Breakefield XO, Pegtel DM (2012) Extracellular vesicles and their convergence with viral pathways. Adv Virol 2012:767694. https://doi.org/10.1155/2012/767694
Raab-Traub N, Dittmer DP (2017) Viral effects on the content and function of extracellular vesicles. Nat Rev Microbiol 15(9):559–572. https://doi.org/10.1038/nrmicro.2017.60
Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383. https://doi.org/10.1083/jcb.201211138
Bello-Morales R, Lopez-Guerrero JA (2018) Extracellular vesicles in herpes viral spread and immune evasion. Front Microbiol 9:2572. https://doi.org/10.3389/fmicb.2018.02572
Cocucci E, Meldolesi J (2015) Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol 25(6):364–372. https://doi.org/10.1016/j.tcb.2015.01.004
Colombo M, Raposo G, Thery C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289. https://doi.org/10.1146/annurev-cellbio-101512-122326
Cocucci E, Racchetti G, Meldolesi J (2009) Shedding microvesicles: artefacts no more. Trends Cell Biol 19(2):43–51. https://doi.org/10.1016/j.tcb.2008.11.003
Budnik V, Ruiz-Canada C, Wendler F (2016) Extracellular vesicles round off communication in the nervous system. Nat Rev Neurosci 17(3):160–172. https://doi.org/10.1038/nrn.2015.29
Andreu Z, Yañez-Mo M (2014) Tetraspanins in extracellular vesicle formation and function. Front Immunol 5:442. https://doi.org/10.3389/fimmu.2014.00442
Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Thery C (2016) Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A 113(8):E968–E977. https://doi.org/10.1073/pnas.1521230113
Willms E, Johansson HJ, Mager I, Lee Y, Blomberg KE, Sadik M, Alaarg A, Smith CI, Lehtio J, El Andaloussi S, Wood MJ, Vader P (2016) Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci Rep 6:22519. https://doi.org/10.1038/srep22519
Wei X, Liu C, Wang H, Wang L, Xiao F, Guo Z, Zhang H (2016) Surface phosphatidylserine is responsible for the internalization on microvesicles derived from hypoxia-induced human bone marrow mesenchymal stem cells into human endothelial cells. PLoS One 11(1):e0147360. https://doi.org/10.1371/journal.pone.0147360
Nolte-'t Hoen E, Cremer T, Gallo RC, Margolis LB (2016) Extracellular vesicles and viruses: are they close relatives? Proc Natl Acad Sci U S A 113(33):9155–9161. https://doi.org/10.1073/pnas.1605146113
Meckes DG Jr, Raab-Traub N (2011) Microvesicles and viral infection. J Virol 85(24):12844–12854. https://doi.org/10.1128/JVI.05853-11
Alenquer M, Amorim MJ (2015) Exosome biogenesis, regulation, and function in viral infection. Viruses 7(9):5066–5083. https://doi.org/10.3390/v7092862
Altan-Bonnet N (2016) Extracellular vesicles are the Trojan horses of viral infection. Curr Opin Microbiol 32:77–81. https://doi.org/10.1016/j.mib.2016.05.004
Anderson MR, Kashanchi F, Jacobson S (2016) Exosomes in viral disease. Neurotherapeutics 13(3):535–546. https://doi.org/10.1007/s13311-016-0450-6
Meckes DG Jr (2015) Exosomal communication goes viral. J Virol 89(10):5200–5203. https://doi.org/10.1128/JVI.02470-14
van Dongen HM, Masoumi N, Witwer KW, Pegtel DM (2016) Extracellular vesicles exploit viral entry routes for cargo delivery. Microbiol Mol Biol Rev 80(2):369–386. https://doi.org/10.1128/MMBR.00063-15
Szilagyi JF, Cunningham C (1991) Identification and characterization of a novel non-infectious herpes simplex virus-related particle. J Gen Virol 72(Pt 3):661–668. https://doi.org/10.1099/0022-1317-72-3-661
Kalamvoki M, Deschamps T (2016) Extracellular vesicles during herpes simplex virus type 1 infection: an inquire. Virol J 13:63. https://doi.org/10.1186/s12985-016-0518-2
Dargan DJ, Subak-Sharpe JH (1997) The effect of herpes simplex virus type 1 L-particles on virus entry, replication, and the infectivity of naked herpesvirus DNA. Virology 239(2):378–388. https://doi.org/10.1006/viro.1997.8893
Kalamvoki M, Du T, Roizman B (2014) Cells infected with herpes simplex virus 1 export to uninfected cells exosomes containing STING, viral mRNAs, and microRNAs. Proc Natl Acad Sci U S A 111(46):E4991–E4996. https://doi.org/10.1073/pnas.1419338111
Bello-Morales R, Praena B, de la Nuez C, Rejas MT, Guerra M, Galan-Ganga M, Izquierdo M, Calvo V, Krummenacher C, Lopez-Guerrero JA (2018) Role of microvesicles in the spread of herpes simplex virus 1 in oligodendrocytic cells. J Virol 92(10). https://doi.org/10.1128/JVI.00088-18
Kurien BT, Scofield RH (2015) Multiple immunoblots by passive diffusion of proteins from a single SDS-PAGE gel. In: Kurien BT, Scofield RH (eds) Western blotting. Methods and protocols, Methods in molecular biology, vol 1312. Springer Science+Business Media, New York, pp 77–86. https://doi.org/10.1007/978-1-4939-2694-7_11
Kurien BT, Scofield RH (2015) Western blotting: an introduction. In: Kurien BT, Scofield RH (eds) Western blotting. Methods and protocols, Methods in molecular biology, vol 1312. Springer Science+Business Media, New York, pp 17–30. https://doi.org/10.1007/978-1-4939-2694-7_5
Witwer KW, Buzas EI, Bemis LT, Bora A, Lasser C, Lotvall J, Nolte-'t Hoen EN, Piper MG, Sivaraman S, Skog J, Thery C, Wauben MH, Hochberg F (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2. https://doi.org/10.3402/jev.v2i0.20360
Thery C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9(8):581–593. https://doi.org/10.1038/nri2567
Gould SJ, Raposo G (2013) As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles 2. https://doi.org/10.3402/jev.v2i0.20389
Clancy JW, Sedgwick A, Rosse C, Muralidharan-Chari V, Raposo G, Method M, Chavrier P, D'Souza-Schorey C (2015) Regulated delivery of molecular cargo to invasive tumour-derived microvesicles. Nat Commun 6:6919. https://doi.org/10.1038/ncomms7919
Haraszti RA, Didiot MC, Sapp E, Leszyk J, Shaffer SA, Rockwell HE, Gao F, Narain NR, DiFiglia M, Kiebish MA, Aronin N, Khvorova A (2016) High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources. J Extracell Vesicles 5:32570. https://doi.org/10.3402/jev.v5.32570
Muralidharan-Chari V, Clancy J, Plou C, Romao M, Chavrier P, Raposo G, D'Souza-Schorey C (2009) ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol 19(22):1875–1885. https://doi.org/10.1016/j.cub.2009.09.059
Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ (1999) Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94(11):3791–3799
Sinha S, Hoshino D, Hong NH, Kirkbride KC, Grega-Larson NE, Seiki M, Tyska MJ, Weaver AM (2016) Cortactin promotes exosome secretion by controlling branched actin dynamics. J Cell Biol 214(2):197–213. https://doi.org/10.1083/jcb.201601025
Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. Chapter 3:Unit 3 22. https://doi.org/10.1002/0471143030.cb0322s30
Yuana Y, Sturk A, Nieuwland R (2013) Extracellular vesicles in physiological and pathological conditions. Blood Rev 27(1):31–39. https://doi.org/10.1016/j.blre.2012.12.002
van der Pol E, Boing AN, Harrison P, Sturk A, Nieuwland R (2012) Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 64(3):676–705. https://doi.org/10.1124/pr.112.005983
Yamashita S (2016) Post-embedding mammalian tissue for immunoelectron microscopy: a standardized procedure based on heat-induced antigen retrieval. In: Schwartzbach S, Skalli O, Schikorsk T (eds) High-resolution imaging of cellular proteins, Methods Mol biol, vol 1474. Springer Science+Business Media, New York, pp 279–290. https://doi.org/10.1007/978-1-4939-6352-2_18
Acknowledgments
We thank María Teresa Rejas, Technical Director of the Electron Microscopy Facility (CBMSO), for her support with the electron-microscopy protocols.
Funding: Fundación Severo Ochoa-Aeromédica Canaria provided financial support. The funders had no role in study design, decision to publish, or preparation of the manuscript.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Bello-Morales, R., López-Guerrero, J.A. (2020). Isolation/Analysis of Extracellular Microvesicles from HSV-1-Infected Cells. In: Diefenbach, R., Fraefel, C. (eds) Herpes Simplex Virus . Methods in Molecular Biology, vol 2060. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9814-2_17
Download citation
DOI: https://doi.org/10.1007/978-1-4939-9814-2_17
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-4939-9813-5
Online ISBN: 978-1-4939-9814-2
eBook Packages: Springer Protocols