Advertisement

Single-Cell Multiplexed Proteomics on the IsoLight Resolves Cellular Functional Heterogeneity to Reveal Clinical Responses of Cancer Patients to Immunotherapies

  • Dong Liu
  • Patrick Paczkowski
  • Sean Mackay
  • Colin Ng
  • Jing ZhouEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2055)

Abstract

Cancer immunotherapies, in particular adoptive T cell therapy and immune-checkpoint blockade therapy have demonstrated a remarkable success in the treatment of cancer. However, due to heterogeneous functionality and complex immune response of immune cells, it remains challenging to identify predictive biomarkers which have the potential to correlate with efficacy and adverse effects of immunotherapies and help selecting patients who might benefit from the therapy, developing more personalized therapeutics as well as reducing clinical trial cost. The single-cell IsoCode chip in conjunction with fluorescent ELISA-based assay enables a simultaneous detection up to 40+ proteins secreted from live single immune cells, providing a large portion of the assayable functions for each immune cell type, and thus precise assessment of multifunctional, or polyfunctional, heterogeneity of each immune cell type.

This unique functional detection capability provides a powerful solution to unmet needs in immunotherapy patient profiling today. Recently, the single-cell metric termed polyfunctional strength index (PSI™) by IsoCode chip computed from preinfusion anti-CD19 chimeric antigen receptor (CAR)-T cell products has demonstrated a significant association with clinical response and cytokine release syndrome (CRS) of cancer patient to the therapy after cell product infusion. This chapter elucidates IsoPlexis single-cell highly multiplexed proteomic platform and provides technical details for characterizing cell products and various cell subsets from peripheral blood, bone marrow, or tumor tissues using this assay.

Key words

Cancer immunotherapy Single-cell proteomics IsoCode chip IsoLight system Polyfunctionality Polyfunctional strength index Predictive biomarkers Microfluidics 

References

  1. 1.
    June CH, O'Connor RS, Kawalekar OU, Ghassemi S, Milone MC (2018) CAR T cell immunotherapy for human cancer. Science 359(6382):1361–1365.  https://doi.org/10.1126/science.aar6711CrossRefPubMedGoogle Scholar
  2. 2.
    Chen L, Han X (2015) Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J Clin Invest 125(9):3384–3391.  https://doi.org/10.1172/JCI80011CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC, Vonderheide RH, Pittet MJ, Jain RK, Zou W, Howcroft TK, Woodhouse EC, Weinberg RA, Krummel MF (2018) Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med 24(5):541–550.  https://doi.org/10.1038/s41591-018-0014-xCrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Roh W, Chen PL, Reuben A, Spencer CN, Prieto PA, Miller JP, Gopalakrishnan V, Wang F, Cooper ZA, Reddy SM, Gumbs C, Little L, Chang Q, Chen WS, Wani K, De Macedo MP, Chen E, Austin-Breneman JL, Jiang H, Roszik J, Tetzlaff MT, Davies MA, Gershenwald JE, Tawbi H, Lazar AJ, Hwu P, Hwu WJ, Diab A, Glitza IC, Patel SP, Woodman SE, Amaria RN, Prieto VG, Hu J, Sharma P, Allison JP, Chin L, Zhang J, Wargo JA, Futreal PA (2017) Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance. Sci Transl Med 9(379):eaah3560.  https://doi.org/10.1126/scitranslmed.aah3560CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Yee C (2018) Adoptive T cell therapy: points to consider. Curr Opin Immunol 51:197–203.  https://doi.org/10.1016/j.coi.2018.04.007CrossRefPubMedGoogle Scholar
  6. 6.
    Brudno JN, Kochenderfer JN (2016) Toxicities of chimeric antigen receptor T cells: recognition and management. Blood 127(26):3321–3330.  https://doi.org/10.1182/blood-2016-04-703751CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K, Chung SS, Stefanski J, Borquez-Ojeda O, Olszewska M, Qu J, Wasielewska T, He Q, Fink M, Shinglot H, Youssif M, Satter M, Wang Y, Hosey J, Quintanilla H, Halton E, Bernal Y, Bouhassira DC, Arcila ME, Gonen M, Roboz GJ, Maslak P, Douer D, Frattini MG, Giralt S, Sadelain M, Brentjens R (2014) Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 6(224):224ra225.  https://doi.org/10.1126/scitranslmed.3008226CrossRefGoogle Scholar
  8. 8.
    Gross G, Eshhar Z (2016) Therapeutic potential of T cell chimeric antigen receptors (CARs) in Cancer treatment: counteracting off-tumor toxicities for safe CAR T cell therapy. Annu Rev Pharmacol Toxicol 56:59–83.  https://doi.org/10.1146/annurev-pharmtox-010814-124844CrossRefPubMedGoogle Scholar
  9. 9.
    Bercovici N, Duffour MT, Agrawal S, Salcedo M, Abastado JP (2000) New methods for assessing T-cell responses. Clin Diagn Lab Immunol 7(6):859–864PubMedPubMedCentralGoogle Scholar
  10. 10.
    Seder RA, Darrah PA, Roederer M (2008) T-cell quality in memory and protection: implications for vaccine design. Nat Rev Immunol 8(4):247–258.  https://doi.org/10.1038/nri2274CrossRefPubMedGoogle Scholar
  11. 11.
    Haining WN (2012) Travels in time: assessing the functional complexity of T cells. Proc Natl Acad Sci U S A 109(5):1359–1360.  https://doi.org/10.1073/pnas.1119856109CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Anastasopoulou EA, Voutsas IF, Papamichail M, Baxevanis CN, Perez SA (2016) MHC class II tetramer analyses in AE37-vaccinated prostate cancer patients reveal vaccine-specific polyfunctional and long-lasting CD4(+) T-cells. Oncoimmunology 5(7):e1178439.  https://doi.org/10.1080/2162402X.2016.1178439CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Heath JR, Ribas A, Mischel PS (2016) Single-cell analysis tools for drug discovery and development. Nat Rev Drug Discov 15(3):204–216.  https://doi.org/10.1038/nrd.2015.16CrossRefPubMedGoogle Scholar
  14. 14.
    Ma C, Fan R, Ahmad H, Shi Q, Comin-Anduix B, Chodon T, Koya RC, Liu CC, Kwong GA, Radu CG, Ribas A, Heath JR (2011) A clinical microchip for evaluation of single immune cells reveals high functional heterogeneity in phenotypically similar T cells. Nat Med 17(6):738–743.  https://doi.org/10.1038/nm.2375CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Yao Y, Liu R, Shin MS, Trentalange M, Allore H, Nassar A, Kang I, Pober JS, Montgomery RR (2014) CyTOF supports efficient detection of immune cell subsets from small samples. J Immunol Methods 415:1–5.  https://doi.org/10.1016/j.jim.2014.10.010CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Chen G, Weng NP (2012) Analyzing the phenotypic and functional complexity of lymphocytes using CyTOF (cytometry by time-of-flight). Cell Mol Immunol 9(4):322–323.  https://doi.org/10.1038/cmi.2012.16CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lu Y, Xue Q, Eisele MR, Sulistijo ES, Brower K, Han L, Amir el AD, Pe'er D, Miller-Jensen K, Fan R (2015) Highly multiplexed profiling of single-cell effector functions reveals deep functional heterogeneity in response to pathogenic ligands. Proc Natl Acad Sci U S A 112(7):E607–E615.  https://doi.org/10.1073/pnas.1416756112CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Rossi J, Paczkowski P, Shen YW, Morse K, Flynn B, Kaiser A, Ng C, Gallatin K, Cain T, Fan R, Mackay S, Heath JR, Rosenberg SA, Kochenderfer JN, Zhou J, Bot A (2018) Preinfusion polyfunctional anti-CD19 chimeric antigen receptor T cells are associated with clinical outcomes in NHL. Blood 132(8):804–814.  https://doi.org/10.1182/blood-2018-01-828343CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Xue Q, Bettini E, Paczkowski P, Ng C, Kaiser A, McConnell T, Kodrasi O, Quigley MF, Heath J, Fan R, Mackay S, Dudley ME, Kassim SH, Zhou J (2017) Single-cell multiplexed cytokine profiling of CD19 CAR-T cells reveals a diverse landscape of polyfunctional antigen-specific response. J Immunother Cancer 5(1):85.  https://doi.org/10.1186/s40425-017-0293-7CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ma C, Cheung AF, Chodon T, Koya RC, Wu Z, Ng C, Avramis E, Cochran AJ, Witte ON, Baltimore D, Chmielowski B, Economou JS, Comin-Anduix B, Ribas A, Heath JR (2013) Multifunctional T-cell analyses to study response and progression in adoptive cell transfer immunotherapy. Cancer Discov 3(4):418–429.  https://doi.org/10.1158/2159-8290.CD-12-0383CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lin L, Ma C, Wei B, Aziz N, Rajalingam R, Yusung S, Erlich HA, Trachtenberg EA, Targan SR, McGovern DP, Heath JR, Braun J (2014) Human NK cells licensed by killer Ig receptor genes have an altered cytokine program that modifies CD4+ T cell function. J Immunol 193(2):940–949.  https://doi.org/10.4049/jimmunol.1400093CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Fujiwara M, Anstadt EJ, Flynn B, Morse K, Ng C, Paczkowski P, Zhou J, Mackay S, Wasko N, Nichols F, Clark RB (2018) Enhanced TLR2 responses in multiple sclerosis. Clin Exp Immunol 193(3):313–326.  https://doi.org/10.1111/cei.13150CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Dong Liu
    • 1
  • Patrick Paczkowski
    • 1
  • Sean Mackay
    • 1
  • Colin Ng
    • 1
  • Jing Zhou
    • 1
    Email author
  1. 1.IsoPlexisBranfordUSA

Personalised recommendations