Advertisement

Theranostics pp 171-183 | Cite as

Digital Holographic Imaging as a Method for Quantitative, Live Cell Imaging of Drug Response to Novel Targeted Cancer Therapies

  • Laura V. CroftEmail author
  • Jaimie A. Mulders
  • Derek J. Richard
  • Kenneth O’Byrne
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2054)

Abstract

Digital holographic imaging (DHI) is a noninvasive, live cell imaging technique that enables long-term quantitative visualization of cells in culture. DHI uses phase-shift imaging to monitor and quantify cellular events such as cell division, cell death, cell migration, and drug responses. In recent years, the application of DHI has expanded from its use in the laboratory to the clinical setting, and currently it is being developed for use in theranostics. Here, we describe the use of the DHI platform HoloMonitorM4 to evaluate the effects of novel, targeted cancer therapies on cell viability and proliferation using the HeLa cancer cell line as a model. We present single cell tracking and population-wide analysis of multiple cell morphology parameters.

Key words

Digital holographic imaging Noninvasive live cell imaging Label-free live cell imaging Apoptosis imaging Drug effect analysis HolomonitorM4 Cytotoxicity Targeted cancer therapies 

References

  1. 1.
    Alm K, Cirenawis H, Gisselsson L, Wingren AG, Janicke B, Molder A, Oredsson S, Persson J (2011) Digital holography and cell studies. IntechOpen, LondonCrossRefGoogle Scholar
  2. 2.
    Alm K, El-Schich Z, Falck M, Gjrloff Wingren A, Janicke B, Oredsso S (2013) Cells and holograms – holograms and digital holographic microscopy as a tool to study the morphology of living cells. In: Holography – basic principles and contemporary applications.  https://doi.org/10.5772/54505CrossRefGoogle Scholar
  3. 3.
    Kemper B, von Bally G (2008) Digital holographic microscopy for live cell applications and technical inspection. Appl Opt 47(4):A52–A61CrossRefGoogle Scholar
  4. 4.
    <1055–1062.pdf>Google Scholar
  5. 5.
    El-Schich Z, Kamlund S, Janicke B, Alm K, Wingren AG (2017) Holography: the usefulness of digital holographic microscopy for clinical diagnostics. In: Holographic materials and optical systems.  https://doi.org/10.5772/66042CrossRefGoogle Scholar
  6. 6.
    Cox S (2015) Super-resolution imaging in live cells. Dev Biol 401(1):175–181.  https://doi.org/10.1016/j.ydbio.2014.11.025CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Purschke M, Rubio N, Held KD, Redmond RW (2010) Phototoxicity of Hoechst 33342 in time-lapse fluorescence microscopy. Photochem Photobiol Sci 9(12):1634–1639.  https://doi.org/10.1039/c0pp00234hCrossRefPubMedGoogle Scholar
  8. 8.
    Tinevez JY, Dragavon J, Baba-Aissa L, Roux P, Perret E, Canivet A et al (2012) A quantitative method for measuring phototoxicity of a live cell imaging microscope. Methods Enzymol 506:291–309.  https://doi.org/10.1016/b978-0-12-391856-7.00039-1CrossRefPubMedGoogle Scholar
  9. 9.
    Janicke B, Karsnas A, Egelberg P, Alm K (2017) Label-free high temporal resolution assessment of cell proliferation using digital holographic microscopy. Cytometry A 91(5):460–469.  https://doi.org/10.1002/cyto.a.23108CrossRefPubMedGoogle Scholar
  10. 10.
    Molder A, Sebesta M, Gustafsson M, Gisselson L, Wingren AG, Alm K (2008) Non-invasive, label-free cell counting and quantitative analysis of adherent cells using digital holography. J Microsc 232(2):240–247.  https://doi.org/10.1111/j.1365-2818.2008.02095.xCrossRefPubMedGoogle Scholar
  11. 11.
    Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510CrossRefGoogle Scholar
  12. 12.
    Kamlund S, Strand D, Janicke B, Alm K, Oredsson S (2017) Influence of salinomycin treatment on division and movement of individual cancer cells cultured in normoxia or hypoxia evaluated with time-lapse digital holographic microscopy. Cell Cycle 16(21):2128–2138.  https://doi.org/10.1080/15384101.2017.1380131CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Langehanenberg P, Ivanova L, Bernhardt I, Ketelhut S, Vollmer A, Dirksen D et al (2009) Automated three-dimensional tracking of living cells by digital holographic microscopy. J Biomed Opt 14(1):014018.  https://doi.org/10.1117/1.3080133CrossRefPubMedGoogle Scholar
  14. 14.
    El-Schich Z, Molder A, Tassidis H, Harkonen P, Falck Miniotis M, Gjorloff Wingren A (2015) Induction of morphological changes in death-induced cancer cells monitored by holographic microscopy. J Struct Biol 189(3):207–212.  https://doi.org/10.1016/j.jsb.2015.01.010CrossRefPubMedGoogle Scholar
  15. 15.
    Kavitha N, Chen Y, Kanwar JR, Sasidharan S (2017) In situ morphological assessment of apoptosis induced by Phaleria macrocarpa (Boerl.) fruit ethyl acetate fraction (PMEAF) in MDA-MB-231 cells by microscopy observation. Biomed Pharmacother 87:609–620.  https://doi.org/10.1016/j.biopha.2016.12.127CrossRefPubMedGoogle Scholar
  16. 16.
    Kunzelmann K (2016) Ion channels in regulated cell death. Cell Mol Life Sci 73(11–12):2387–2403.  https://doi.org/10.1007/s00018-016-2208-zCrossRefPubMedGoogle Scholar
  17. 17.
    Ousingsawat J, Cabrita I, Wanitchakool P, Sirianant L, Krautwald S, Linkermann A et al (2017) Ca(2+) signals, cell membrane disintegration, and activation of TMEM16F during necroptosis. Cell Mol Life Sci 74(1):173–181.  https://doi.org/10.1007/s00018-016-2338-3CrossRefPubMedGoogle Scholar
  18. 18.
    Ousingsawat J, Wanitchakool P, Schreiber R, Kunzelmann K (2018) Contribution of TMEM16F to pyroptotic cell death. Cell Death Dis 9(3):300.  https://doi.org/10.1038/s41419-018-0373-8CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Vijayarathna S, Chen Y, Kanwar JR, Sasidharan S (2017) Standardized Polyalthia longifolia leaf extract (PLME) inhibits cell proliferation and promotes apoptosis: the anti-cancer study with various microscopy methods. Biomed Pharmacother 91:366–377.  https://doi.org/10.1016/j.biopha.2017.04.112CrossRefPubMedGoogle Scholar
  20. 20.
    Falck Miniotis M, Mukwaya A, Gjorloff Wingren A (2014) Digital holographic microscopy for non-invasive monitoring of cell cycle arrest in L929 cells. PLoS One 9(9):e106546.  https://doi.org/10.1371/journal.pone.0106546CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Guo P, Huang J, Moses MA (2017) Characterization of dormant and active human cancer cells by quantitative phase imaging. Cytometry A 91(5):424–432.  https://doi.org/10.1002/cyto.a.23083CrossRefPubMedGoogle Scholar
  22. 22.
    Farkas E, Szekacs A, Kovacs B, Olah M, Horvath R, Szekacs I (2018) Label-free optical biosensor for real-time monitoring the cytotoxicity of xenobiotics: a proof of principle study on glyphosate. J Hazard Mater 351:80–89.  https://doi.org/10.1016/j.jhazmat.2018.02.045CrossRefPubMedGoogle Scholar
  23. 23.
    Hackler L Jr, Ozsvari B, Gyuris M, Sipos P, Fabian G, Molnar E et al (2016) The curcumin analog C-150, influencing NF-kappaB, UPR and Akt/notch pathways has potent anticancer activity in vitro and in vivo. PLoS One 11(3):e0149832.  https://doi.org/10.1371/journal.pone.0149832CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ozdemir A, Yildiz M, Senol FS, Simay YD, Ibisoglu B, Gokbulut A et al (2017) Promising anticancer activity of Cyclotrichium niveum L. extracts through induction of both apoptosis and necrosis. Food Chem Toxicol 109(Pt 2):898–909.  https://doi.org/10.1016/j.fct.2017.03.062CrossRefPubMedGoogle Scholar
  25. 25.
    Semenas J, Hedblom A, Miftakhova RR, Sarwar M, Larsson R, Shcherbina L et al (2014) The role of PI3K/AKT-related PIP5K1alpha and the discovery of its selective inhibitor for treatment of advanced prostate cancer. Proc Natl Acad Sci U S A 111(35):E3689–E3698.  https://doi.org/10.1073/pnas.1405801111CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Zhang Y, Sriraman SK, Kenny HA, Luther E, Torchilin V, Lengyel E (2016) Reversal of chemoresistance in ovarian cancer by co-delivery of a P-glycoprotein inhibitor and paclitaxel in a liposomal platform. Mol Cancer Ther 15(10):2282–2293.  https://doi.org/10.1158/1535-7163.Mct-15-0986CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Benzerdjeb N, Garbar C, Camparo P, Sevestre H (2016) Digital holographic microscopy as screening tool for cervical cancer preliminary study. Cancer Cytopathol 124(8):573–580.  https://doi.org/10.1002/cncy.21727CrossRefPubMedGoogle Scholar
  28. 28.
    Anand A, Chhaniwal VK, Patel NR, Javidi B (2012) Automatic identification of malaria-infected RBC with digital holographic microscopy using correlation algorithms. IEEE Photonics J 4(5):1456–1464.  https://doi.org/10.1109/jphot.2012.2210199CrossRefGoogle Scholar
  29. 29.
    Di Caprio G, Ferrara MA, Miccio L, Merola F, Memmolo P, Ferraro P et al (2015) Holographic imaging of unlabelled sperm cells for semen analysis: a review. J Biophotonics 8(10):779–789.  https://doi.org/10.1002/jbio.201400093CrossRefPubMedGoogle Scholar
  30. 30.
    Lenz P, Bettenworth D, Krausewitz P, Bruckner M, Ketelhut S, von Bally G et al (2013) Digital holographic microscopy quantifies the degree of inflammation in experimental colitis. Integr Biol (Camb) 5(3):624–630.  https://doi.org/10.1039/c2ib20227aCrossRefGoogle Scholar
  31. 31.
    <645042[1].pdf>Google Scholar
  32. 32.
    Kasprowicz R, Suman R, O’Toole P (2017) Characterising live cell behaviour: traditional label-free and quantitative phase imaging approaches. Int J Biochem Cell Biol 84:89–95.  https://doi.org/10.1016/j.biocel.2017.01.004CrossRefPubMedGoogle Scholar
  33. 33.
    Chen AY, Liu LF (1994) DNA topoisomerases: essential enzymes and lethal targets. Annu Rev Pharmacol Toxicol 34:191–218.  https://doi.org/10.1146/annurev.pa.34.040194.001203CrossRefPubMedGoogle Scholar
  34. 34.
    Chen GL, Yang L, Rowe TC, Halligan BD, Tewey KM, Liu LF (1984) Nonintercalative antitumor drugs interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II. J Biol Chem 259(21):13560–13566PubMedGoogle Scholar
  35. 35.
    <1204436.pdf>Google Scholar
  36. 36.
    Dasari S, Tchounwou PB (2014) Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 740:364–378.  https://doi.org/10.1016/j.ejphar.2014.07.025CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Laura V. Croft
    • 1
    Email author
  • Jaimie A. Mulders
    • 2
  • Derek J. Richard
    • 1
  • Kenneth O’Byrne
    • 1
    • 3
  1. 1.Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Cancer and Ageing Research Program, Translational Research InstituteQueensland University of TechnologyWoolloongabbaAustralia
  2. 2.TrendBio Pty Ltd.AlphingtonAustralia
  3. 3.Cancer ServicesPrincess Alexandra HospitalBrisbaneAustralia

Personalised recommendations