Skip to main content

Simple Histochemical Methods to Detect Cell Death in the Eye-Antennae Imaginal Disc of Drosophila

  • Protocol
  • First Online:
Fundamental Approaches to Screen Abnormalities in Drosophila

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 499 Accesses

Abstract

During early time point of development, a large number of cells are produced. As development progresses, many cells die to shape the body in its right form. Drosophila melanogaster has been extensively used to study various developmental mechanisms including cell death. It is an evolutionarily conserved mechanism needed for the cellular growth, development and maintenance of the organism. During development, cell death is initiated as an action of internal clock present within the body, but still many external factors can alter the time and frequency of cell death. The nucleic acids present within the body reflect the physiological condition of an organism. Various fluorescent dyes can detect the nucleic acid damage and ultimately the dead cells. Dyes that are commonly used to stain nucleic acid include acridine orange, propidium iodide, Hoechst and DAPI. All these dyes bind to the nuclei acid, and thus the live or dead stage of the cell can be visualized under a fluorescent microscope. The current study describes the staining techniques of all the four dyes in various Drosophila tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AO:

Acridine orange

DAPI:

4′, 6-diamidino-2-phenylindole

PBS:

Phosphate buffer saline

PBST:

Phosphate buffer saline with Tween-20

PFA:

Paraformaldehyde

PI:

Propidium iodide

References

  1. Plemel JR, Caprariello AV, Keough MB, Henry TJ, Tsutsui S, Chu TH, Schenk GJ, Klaver R, Yong VW, Stys PK (2017) Unique spectral signatures of the nucleic acid dye acridine orange can distinguish cell death by apoptosis and necroptosis. J Cell Biol 216(4):1163–1181

    Article  CAS  Google Scholar 

  2. Herzenberg LA, Sweet RG, Herzenberg LA (1976) Fluorescence-activated cell sorting. Sci Am 234(3):108–118

    Article  CAS  Google Scholar 

  3. Neyfakh AA (1988) Use of fluorescent dyes as molecular probes for the study of multidrug resistance. Exp Cell Res 174(1):168–176

    Article  CAS  Google Scholar 

  4. Lichtman JW, Conchello J-A (2005) Fluorescence microscopy. Nat Methods 2(12):910

    Article  CAS  Google Scholar 

  5. Martin RM, Leonhardt H, Cardoso MC (2005) DNA labeling in living cells. Cytometry A 67(1):45–52

    Article  Google Scholar 

  6. Kusuzaki K, Murata H, Matsubara T, Satonaka H, Wakabayashi T, Matsumine A, Uchida A (2007) Acridine orange could be an innovative anticancer agent under photon energy. In Vivo 21(2):205–214

    CAS  PubMed  Google Scholar 

  7. Johnson I (1998) Fluorescent probes for living cells. Histochem J 30(3):123–140

    Article  CAS  Google Scholar 

  8. von Bertalanffy L (1963) Acridine orange fluorescence in cell physiology, cytochemistry and medicine. Protoplasma 57(1–4):51–83

    Article  Google Scholar 

  9. Nicoletti I, Migliorati G, Pagliacci M, Grignani F, Riccardi C (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139(2):271–279

    Article  CAS  Google Scholar 

  10. Macklis JD, Madison RD (1990) Progressive incorporation of propidium iodide in cultured mouse neurons correlates with declining electrophysiological status: a fluorescence scale of membrane integrity. J Neurosci Methods 31(1):43–46

    Article  CAS  Google Scholar 

  11. Cevik IU, Dalkara T (2003) Intravenously administered propidium iodide labels necrotic cells in the intact mouse brain after injury. Cell Death Differ 10(8):928

    Article  Google Scholar 

  12. Krishan A (1975) Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining. J Cell Biol 66(1):188–193

    Article  CAS  Google Scholar 

  13. Rieger AM, Hall BE, Schang LM, Barreda DR (2010) Conventional apoptosis assays using propidium iodide generate a significant number of false positives that prevent accurate assessment of cell death. J Immunol Methods 358(1–2):81–92

    Article  CAS  Google Scholar 

  14. Chohan K, Griffin J, Carrell DT (2004) Evaluation of chromatin integrity in human sperm using acridine orange staining with different fixatives and after cryopreservation. Andrologia 36(5):321–326

    Article  CAS  Google Scholar 

  15. Virant-Klun I, Tomazevic T, Meden-Vrtovec H (2002) Sperm single-stranded DNA, detected by acridine orange staining, reduces fertilization and quality of ICSI-derived embryos. J Assist Reprod Genet 19(7):319–328

    Article  Google Scholar 

  16. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175(1):184–191

    Article  CAS  Google Scholar 

  17. Baisch H (1988) Different quiescence states of three culture cell lines detected by acridine orange staining of cellular RNA. Cytometry 9(4):325–331

    Article  CAS  Google Scholar 

  18. Rigler R (1969) Acridine orange in nucleic acid analysis. Ann N Y Acad Sci 157(1):211–224

    Article  CAS  Google Scholar 

  19. Raap A, Marijnen J, Vrolijk J, Van der Ploeg M (1986) Denaturation, renaturation, and loss of DNA during in situ hybridization procedures. Cytometry 7(3):235–242

    Article  CAS  Google Scholar 

  20. Cai K, Yang J, Guan M, Ji W, Li Y, Rens W (2005) Single UV excitation of Hoechst 33342 and propidium iodide for viability assessment of rhesus monkey spermatozoa using flow cytometry. Arch Androl 51(5):371–383

    Article  CAS  Google Scholar 

  21. Dmitrieva NI, Burg MB (2008) Analysis of DNA breaks, DNA damage response, and apoptosis produced by high NaCl. Am J Physiol-Renal Physiol 295(6):F1678–F1688

    Article  CAS  Google Scholar 

  22. Lakowicz JR, Gryczynski I, Malak H, Schrader M, Engelhardt P, Kano H, Hell SW (1997) Time-resolved fluorescence spectroscopy and imaging of DNA labeled with DAPI and Hoechst 33342 using three-photon excitation. Biophys J 72(2 Pt 1):567

    Article  CAS  Google Scholar 

  23. Gryczynski I, Malak H, Lakowicz JR (1996) Multiphoton excitation of the DNA stains DAPI and Hoechst. Bioimaging 4(3):138–148

    Article  CAS  Google Scholar 

  24. Tanious FA, Veal JM, Buczak H, Ratmeyer LS, Wilson WD (1992) DAPI (4′, 6-diamidino-2-phenylindole) binds differently to DNA and RNA: minor-groove binding at AT sites and intercalation at AU sites. Biochemistry 31(12):3103–3112

    Article  CAS  Google Scholar 

  25. Gallardo-Escarate C, Álvarez-Borrego J, Von Brand E, Dupré E, Del Rio-Portilla MA (2007) Relationship between DAPI-fluorescence fading and nuclear DNA content: an alternative method to DNA quantification? Biol Res 40 (1):29–40

    Google Scholar 

  26. Wilk R, Murthy SU, Yan H, Krause HM (2010) In situ hybridization: fruit fly embryos and tissues. Current Protocols Essential Laboratory Techniques 4(1):9.3. 1–9.3. 24

    Article  Google Scholar 

  27. Chen F (2016) Preparation and immunofluorescence staining of the trachea in Drosophila larvae and pupae. Bio-protocol 6(9):e1797. https://doi.org/10.21769/BioProtoc.1797

    Article  Google Scholar 

  28. Micchelli CA (2014) Whole-mount immunostaining of the adult Drosophila gastrointestinal tract. Methods 68(1):273–279

    Article  CAS  Google Scholar 

  29. Bonaccorsi S, Giansanti MG, Cenci G, Gatti M (2012) Formaldehyde fixation of Drosophila testes. Cold Spring Harb Protoc 2012(8):pdb.prot067355

    Article  Google Scholar 

Download references

Acknowledgements

SS is thankful to DST/INSPIRE Fellowship/2016/IF160247 for financial support. MM lab is supported by Grant No. BT/PR21857/NNT/28/1238/2017, EMR/2017/003054, Odisha DBT 3325/ST(BIO)-02/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monalisa Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sahu, S., Mishra, M. (2020). Simple Histochemical Methods to Detect Cell Death in the Eye-Antennae Imaginal Disc of Drosophila. In: Mishra, M. (eds) Fundamental Approaches to Screen Abnormalities in Drosophila. Springer Protocols Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9756-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9756-5_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-9755-8

  • Online ISBN: 978-1-4939-9756-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics