Skip to main content

Cryodissection and Tissue Preparation of Drosophila Thorax for Indirect Flight Muscle Imaging

  • Protocol
  • First Online:
Fundamental Approaches to Screen Abnormalities in Drosophila

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Drosophila melanogaster has elaborate musculature comparable to the vertebrate specialized muscles, i.e. skeletal, cardiac and smooth. One of the largest fibrillar muscles found in the adult fly thorax is the indirect flight muscles (IFM). IFM is routinely used by the biologists to study muscle development, muscle attachment to the epidermis, cell biology, neuromuscular interaction, regulation of muscle contraction and signalling. This chapter gives an overview of the structure and development of IFM along with the procedure of dissection and imaging of IFM. This protocol can be used for morphological and phenotypic characterization of Drosophila muscle which will greatly help in our understanding of muscle biology pertaining to the myopathies and their aetiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crossley AC (1978) The morphology and development of the Drosophila muscular system. In: Ashburner M, Wright TRF (eds) Genetics and biology of Drosophila. 2b. Acad. Press, New York, pp 499–560

    Google Scholar 

  2. Reedy MC, Beall C (1993) Ultrastructure of developing flight muscle in Drosophila. I. Assembly of myofibrils. Dev Biol 160:443–465. https://doi.org/10.1006/dbio.1993.1320

    Article  CAS  PubMed  Google Scholar 

  3. Peckham M, Molloy JE, Sparrow JC, White DCS (1990) Physiological properties of the dorsal longitudinal flight muscle and the tergal depressor of the trochanter muscle of Drosophila melanogaster. J Muscle Res Cell Motil 11(3):203–215

    Article  CAS  PubMed  Google Scholar 

  4. Fernandes J, Bate M, Vijayraghavan K (1991) Development of the indirect flight muscles of Drosophila. Development 113(1):67–77

    CAS  Google Scholar 

  5. Weitkunat M, Schnorrer F (2014) A guide to study Drosophila muscle biology. Methods 68(1):2–14. https://doi.org/10.1016/j.ymeth.2014.02.037

    Article  CAS  PubMed  Google Scholar 

  6. Bernstein SI, O'Donnell PT, Cripps RM (1993) Molecular genetic analysis of muscle development, structure, and function in Drosophila. Int Rev Cytol 143:63–152

    Article  CAS  PubMed  Google Scholar 

  7. Vigoreaux JO (2001) Genetics of the Drosophila flight muscle myofibril: a window into the biology of complex systems. BioEssays 23(11):1047–1063. https://doi.org/10.1002/bies.1150

    Article  CAS  PubMed  Google Scholar 

  8. Nongthomba U, Clark S, Cummins M, Ansari M, Stark M, Sparrow JC (2004) Troponin I is required for myofibrillogenesis and sarcomere formation in Drosophila flight muscle. J Cell Sci 117(9):1795–1805. https://doi.org/10.1534/genetics.106.056812

    Article  CAS  PubMed  Google Scholar 

  9. Firdaus H, Mohan J, Naz S, Arathi P, Ramesh SR, Nongthomba U (2015) A cis-regulatory mutation in troponin-I of Drosophila reveals the importance of proper stoichiometry of structural proteins during muscle assembly. Genetics 200(1):149–165. https://doi.org/10.1534/genetics.115.175604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gunage RD, Dhanyasi N, Reichert H, VijayRaghavan K (2017) Drosophila adult muscle development and regeneration. Semin Cell Dev Biol 72:56–66. https://doi.org/10.1016/j.semcdb.2017.11.017

    Article  CAS  PubMed  Google Scholar 

  11. Dutta D, Anant S, Ruiz-Gomez M, Bate M, VijayRaghavan K (2004) Founder myoblasts and fibre number during adult myogenesis in Drosophila. Development 131(15):3761–3772. https://doi.org/10.1242/dev.01249

    Article  CAS  PubMed  Google Scholar 

  12. Ojima K, Lin ZX, Zhang ZQ, Hijikata T, Holtzer S, Labeit S, Sweeney HL (1999) Initiation and maturation of I-Z-I bodies in the growth tips of transfected. J Cell Sci 112:4101–4112

    CAS  PubMed  Google Scholar 

  13. Homyk T, Sheppard DE (1977) Behavioral mutants of Drosophila melanogaster. I. Isolation and mapping of mutations which decrease flight ability. Genetics 87(1):95–104

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Deak II (1977) Mutations of Drosophila melanogaster that affect muscles. Development 40(1):35–63

    CAS  Google Scholar 

  15. Cripps RM, Ball E, Stark M, Lawn A, Sparrow JC (1994) Recovery of dominant, autosomal flightless mutants of Drosophila melanogaster and identification of a new gene required for normal muscle structure and function. Genetics 137:151–164

    CAS  PubMed  PubMed Central  Google Scholar 

  16. An H, Mogami K (1996) Isolation of 88F actin mutants of Drosophila melanogaster and possible alterations in the mutant actin structures. J Mol Biol 260(4):492–505. https://doi.org/10.1006/jmbi.1996.0417

    Article  CAS  PubMed  Google Scholar 

  17. Cripps RM (2006) The contributions of genetics to the study of insect flight muscle function. In nature’s versatile engine: insect flight muscle inside and out. Springer, Boston, pp 2–15

    Book  Google Scholar 

  18. Bellen HJ (1999) Ten years of enhancer detection: lessons from the fly. Plant Cell 11(12):2271–2281. https://doi.org/10.1105/tpc.11.12.2271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morin X, Daneman R, Zavortink M, Chia W (2001) A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proc Natl Acad Sci 98(26):15050–15055. https://doi.org/10.1073/pnas.261408198

    Article  CAS  PubMed  Google Scholar 

  20. Sarov M, Barz C, Jambor H, Hein MY, Schmied C, Suchold D, Stender B, Janosch S, Kj VV, Krishnan RT, Krishnamoorthy A (2016) A genome-wide resource for the analysis of protein localisation in Drosophila. elife 5:e12068. https://doi.org/10.7554/eLife.12068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Anant S, Roy S, Raghavan KV (1998) Twist and Notch negatively regulate adult muscle differentiation in Drosophila. Development 125(8):1361–1369

    CAS  Google Scholar 

  22. Bernard F, Lalouette A, Gullaud M, Jeantet A, Cossard R, Zider A, Ferveur J, Silber J (2003) Control of apterous by vestigial drives indirect flight muscle development in Drosophila. Dev Biol 260:391–403

    Article  CAS  PubMed  Google Scholar 

  23. Fernandes JJ, Atreya KB, Desai KM, Hall RE, Patel MD, Desai AA, Benham AE, Mable JL, Straessle JL (2005) A dominant negative form of Rac1 affects myogenesis of adult thoracic muscles in Drosophila. Dev Biol 285:11–27. https://doi.org/10.1016/j.ydbio.2005.05.040

    Article  CAS  PubMed  Google Scholar 

  24. Fernandes JJ, Celniker SE, VijayRaghavan K (1996) Development of the indirect flight muscle attachment sites in Drosophila: role of the PS integrins and the stripe gene. Dev Biol 176(2):166–184. https://doi.org/10.1006/dbio.1996.0125

    Article  CAS  PubMed  Google Scholar 

  25. Restifo LL, White K (1992) Mutations in a steroid hormone-regulated gene disrupt the metamorphosis of internal tissues in Drosophila: salivary glands, muscle, and gut. Roux Arch Dev Biol 201(4):221–234. https://doi.org/10.1007/BF00188753

    Article  CAS  PubMed  Google Scholar 

  26. Fernandes JJ, Keshishian H (2005) Motoneurons regulate myoblast proliferation and patterning in Drosophila. Dev Biol 277(2):493–505. https://doi.org/10.1016/j.ydbio.2004.09.038

    Article  CAS  PubMed  Google Scholar 

  27. Beall CJ, Sepanski MA, Fyrberg EA (1989) Genetic dissection of Drosophila myofibril formation: effects of actin and myosin heavy chain null alleles. Genes Dev 3:131–140

    Article  CAS  PubMed  Google Scholar 

  28. Kreuz AJ, Simcox A, Maughan D (1996) Alterations in flight muscle ultrastructure and function in Drosophila tropomyosin mutants. J Cell Biol 135(3):673–687

    Article  CAS  PubMed  Google Scholar 

  29. Barbas JA, Galceran J, Torroja L, Prado A, Ferrus A (1993) Abnormal muscle development in hdp3 mutant of Drosophila melanogaster is caused by splicing defect affecting selected troponin-I isoforms. Mol Cell Biol 13:1433–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hakeda S, Endo S, Saigo K (2000) Requirements of Kettin, a giant muscle protein highly conserved in overall structure in evolution, for normal muscle function, viability, and flight activity of Drosophila. J Cell Biol 148:101–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Roulier EM, Fyrberg C, Fyrberg E (1992) Perturbations of Drosophila alpha-Actinin cause muscle paralysis, weakness, and atrophy but do not confer obvious nonmuscle phenotypes. J Cell Biol 116:911–922

    Article  CAS  PubMed  Google Scholar 

  32. Stronach BE, Renfranz PJ, Lilly B, Beckerle MC (1999) Muscle LIM proteins are associated with muscle sarcomeres and require dMEF2 for their expression during Drosophila myogenesis. Mol Biol Cell 10:2329–2342. https://doi.org/10.1091/mbc.10.7.2329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge DBT-BUILDER Project (BT/PR-9028/INF/22/193/2013) for lab equipment to Department of Life Sciences, Central University of Jharkhand and Indian Council of Medical Research (ICMR) for Senior Research Fellowship (SRF) grant to M.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hena Firdaus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dubey, M., Nanda, K.P., Firdaus, H. (2020). Cryodissection and Tissue Preparation of Drosophila Thorax for Indirect Flight Muscle Imaging. In: Mishra, M. (eds) Fundamental Approaches to Screen Abnormalities in Drosophila. Springer Protocols Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9756-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9756-5_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-9755-8

  • Online ISBN: 978-1-4939-9756-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics