Skip to main content

Biochemical Assays to Detect the Antioxidant Level in Drosophila melanogaster

  • Protocol
  • First Online:
Fundamental Approaches to Screen Abnormalities in Drosophila

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Oxygen is a key molecule for the survivability of the aerobic animals, which is converted into toxic byproduct known as reactive oxygen species (ROS) under stress. ROS can induce damage to the cells. To protect the organism from ROS-induced damage, living organisms develop antioxidant defence system. The antioxidative enzymes include superoxide dismutase (SOD), catalase (Cat), glutathione peroxidase (GPx) and 1,1-diphenyl-2-picrylhydrazyl (DPPH). These antioxidative enzymes are also present in Drosophila to invade the ROS generated within the body. As a result, the antioxidant enzymes prevent disease development and increase the life span of the organism. Thus, indirectly the determination of antioxidant enzymes is a pointer of the health of the animal. The protocol describes various antioxidant assays in Drosophila melanogaster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Soni NO (2014) Antioxidant assay in vivo and vitro. Int J Phytopharmacol 5(1)

    Google Scholar 

  2. Paital B, Chainy G (2010) Antioxidant defenses and oxidative stress parameters in tissues of mud crab (Scylla serrata) with reference to changing salinity. Comp Biochem Physiol Part C: Toxicol Pharmacol 151(1):142–151

    Google Scholar 

  3. Flohe L (1984) [10] Superoxide dismutase assays. In: Methods in enzymology, vol 105. Elsevier, pp 93–104

    Google Scholar 

  4. Nandi A, Chatterjee I (1987) Scavenging of superoxide radical by ascorbic acid. J Biosci 11(1–4):435–441

    Article  CAS  Google Scholar 

  5. Cross CE, Halliwell B, Borish ET, Pryor WA, Ames BN, Saul RL, McCORD JM, Harman D (1987) Oxygen radicals and human disease. Ann Intern Med 107(4):526–545

    Article  CAS  PubMed  Google Scholar 

  6. Halliwell B, Gutteridge JM (2015) Free radicals in biology and medicine. Oxford University Press, Oxford

    Book  Google Scholar 

  7. Missirlis F, Phillips JP, Jäckle H (2001) Cooperative action of antioxidant defense systems in Drosophila. Curr Biol 11(16):1272–1277

    Article  CAS  PubMed  Google Scholar 

  8. Faust K, Gehrke S, Yang Y, Yang L, Beal MF, Lu B (2009) Neuroprotective effects of compounds with antioxidant and anti-inflammatory properties in a Drosophila model of Parkinson's disease. BMC Neurosci 10(1):109

    Article  PubMed  PubMed Central  Google Scholar 

  9. Owusu-Ansah E, Banerjee U (2009) Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 461(7263):537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Juntilla MM, Patil VD, Calamito M, Joshi RP, Birnbaum MJ, Koretzky GA (2010) AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood 115(20):4030–4038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Alaraby M, Hernández A, Annangi B, Demir E, Bach J, Rubio L, Creus A, Marcos R (2015) Antioxidant and antigenotoxic properties of CeO2 NPs and cerium sulphate: Studies with Drosophila melanogaster as a promising in vivo model. Nanotoxicology 9(6):749–759

    Article  CAS  PubMed  Google Scholar 

  12. Carmel-Harel O, Storz G (2000) Roles of the glutathione-and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Ann Rev Microbiol 54(1):439–461

    Article  CAS  Google Scholar 

  13. Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4(3):181

    Article  CAS  PubMed  Google Scholar 

  14. Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24(10):R453–R462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fridovich I (1997) Superoxide anion radical (O· 2), superoxide dismutases, and related matters. J Biol Chem 272(30):18515–18517

    Article  CAS  PubMed  Google Scholar 

  16. Chen Y, Azad M, Gibson S (2009) Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ 16(7):1040

    Article  CAS  PubMed  Google Scholar 

  17. Ristow M, Schmeisser S (2011) Extending life span by increasing oxidative stress. Free Radic Biol Med 51(2):327–336

    Article  CAS  PubMed  Google Scholar 

  18. Tormos KV, Anso E, Hamanaka RB, Eisenbart J, Joseph J, Kalyanaraman B, Chandel NS (2011) Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metab 14(4):537–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Branden C-I, Tooze J (1999) Introduction to protein structure. Taylor & Francis

    Google Scholar 

  20. Illanes A (2008) Enzyme biocatalysis. Principles and applications editorial. Springer, New York

    Google Scholar 

  21. Parker CG, Fessler LI, Nelson RE, Fessler JH (1995) Drosophila UDP-glucose: glycoprotein glucosyltransferase: sequence and characterization of an enzyme that distinguishes between denatured and native proteins. EMBO J 14(7):1294–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nelson RE, Fessler L, Takagi Y, Blumberg B, Keene D, Olson P, Parker C, Fessler J (1994) Peroxidasin: a novel enzyme-matrix protein of Drosophila development. EMBO J 13(15):3438–3447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Birley A, Barnes B (1973) Genetical variation for enzyme activity in a population of Drosophila melanogaster. Heredity 31(3):413

    Article  CAS  PubMed  Google Scholar 

  24. Nahmias JA, Bewley GC (1984) Characterization of catalase purified from Drosophila melanogaster by hydrophobic interaction chromatography. Comp Biochem Physiol Part B Comp Biochem 77(2):355–364

    Article  Google Scholar 

  25. Orr WC, Sohal RS (1992) The effects of catalase gene overexpression on life span and resistance to oxidative stress in transgenic Drosophila melanogaster. Arch Biochem Biophys 297(1):35–41

    Article  CAS  PubMed  Google Scholar 

  26. Orr WC, Sohal RS (1994) Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263(5150):1128–1130

    Article  CAS  PubMed  Google Scholar 

  27. Bienert GP, Schjoerring JK, Jahn TP (2006) Membrane transport of hydrogen peroxide. Biochim Biophys Acta (BBA)-Biomembr 1758(8):994–1003

    Article  CAS  Google Scholar 

  28. Subedi RP, Vartak RR, Kale PG (2017) Management of stress exerted by hydrogen peroxide in Drosophila melanogaster using Abhrak bhasma. J Appl Pharm Sci 7(12):065–071

    CAS  Google Scholar 

  29. Marnett LJ (1999) Lipid peroxidation—DNA damage by malondialdehyde. Mutat Res Fundam Mol Mech Mutagen 424(1):83–95

    Article  CAS  Google Scholar 

  30. Ostrea JREM, Cepeda EE, Fleury CA, Balun JE (1985) Red cell membrane lipid peroxidation and hemolysis secondary to phototherapy. Acta Paediatr 74(3):378–381

    Article  CAS  Google Scholar 

  31. Jacob RA (1995) The integrated antioxidant system. Nutr Res 15(5):755–766

    Article  CAS  Google Scholar 

  32. Miquel J, Fleming J, Economos AC (1982) Antioxidants, metabolic rate and aging in Drosophila. Arch Gerontol Geriatr 1(2):159–165

    Article  CAS  PubMed  Google Scholar 

  33. Le Bourg É (2001) Oxidative stress, aging and longevity in Drosophila melanogaster. FEBS Lett 498(2–3):183–186

    Article  PubMed  Google Scholar 

  34. Demir E, Turna F, Kaya B, Creus A, Marcos R (2013) Mutagenic/recombinogenic effects of four lipid peroxidation products in Drosophila. Food Chem Toxicol 53:221–227

    Article  CAS  PubMed  Google Scholar 

  35. Bonilla E, Contreras R, Medina-Leendertz S, Mora M, Villalobos V, Bravo Y (2012) Minocycline increases the life span and motor activity and decreases lipid peroxidation in manganese treated Drosophila melanogaster. Toxicology 294(1):50–53

    Article  CAS  PubMed  Google Scholar 

  36. Sortibrán A, Téllez M, Arnaiz R (2015) Assessment of the genotoxic and antioxidant activities of several vegetables, spices and herbs in combination with cyclophosphamide and 4-nitroquinoline n-oxide in Drosophila melanogaster. Adv Tech Biol Med 1:2379–1764

    Google Scholar 

  37. Macedo GE, Gomes KK, Rodrigues NR, Martins IK, da Luz Wallau G, de Carvalho NR, da Cruz LC, da Costa Silva DG, Boligon AA, Franco JL (2017) Senecio brasiliensis impairs eclosion rate and induces apoptotic cell death in larvae of Drosophila melanogaster. Comp Biochem Physiol Part C Toxicol Pharmacol 198:45–57

    Article  CAS  Google Scholar 

  38. Mora M, Medina-Leendertz SJ, Bonilla E, Terán RE, Paz MC, Arcaya JL (2013) Minocycline, but not ascorbic acid, increases motor activity and extends the life span of Drosophila melanogaster. Investig Clin 54(2):161–170

    Google Scholar 

  39. Girish C (2012) Propensity of Selaginella delicatula aqueous extract to offset rotenone-induced oxidative dysfunctions and neurotoxicity in Drosophila melanogaster: Implications for Parkinson's disease. Neurotoxicology 33(3):444–456

    Article  CAS  PubMed  Google Scholar 

  40. Handke B, Poernbacher I, Goetze S, Ahrens CH, Omasits U, Marty F, Simigdala N, Meyer I, Wollscheid B, Brunner E (2013) The hemolymph proteome of fed and starved Drosophila larvae. PLoS One 8(6):e67208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  42. Waterborg JH, Matthews HR (1994) The Lowry method for protein quantitation. In: Basic protein and peptide protocols. Springer, pp 1–4

    Google Scholar 

  43. Sharma OP, Bhat TK (2009) DPPH antioxidant assay revisited. Food Chem 113(4):1202–1205

    Article  CAS  Google Scholar 

Download references

Acknowledgements

JB is thankful to BT/PR21857/NNT/28/1238/2017 for financial support. MM lab is supported by Grant No. BT/PR21857/NNT/28/1238/2017, EMR/2017/003054 and Odisha DBT 3325/ST(BIO)-02/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monalisa Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bag, J., Mishra, M. (2020). Biochemical Assays to Detect the Antioxidant Level in Drosophila melanogaster. In: Mishra, M. (eds) Fundamental Approaches to Screen Abnormalities in Drosophila. Springer Protocols Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9756-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9756-5_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-9755-8

  • Online ISBN: 978-1-4939-9756-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics