Skip to main content

Advanced Modeling of Cellular Proliferation: Toward a Multi-scale Framework Coupling Cell Cycle to Metabolism by Integrating Logical and Constraint-Based Models

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2049))

Abstract

Biological functions require a coherent cross talk among multiple layers of regulation within the cell. Computational efforts that aim to understand how these layers are integrated across spatial, temporal, and functional scales represent a challenge in Systems Biology. We have developed a computational, multi-scale framework that couples cell cycle and metabolism networks in the budding yeast cell. Here we describe the methodology at the basis of this framework, which integrates on off-the-shelf logical (Boolean) models of a minimal yeast cell cycle with a constraint-based model of metabolism (i.e., the Yeast 7 metabolic network reconstruction). Models are implemented in Python code using the BooleanNet and COBRApy packages, respectively, and are connected through the Boolean logic. The methodology allows for incorporation of interaction data, and validation through –omics data. Furthermore, evolutionary strategies may be incorporated to explore regulatory structures underlying coherent cross talks among regulatory layers.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Chen KC, Csikasz-Nagy A, Gyorffy B, Val J, Novak B, Tyson JJ (2000) Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol Biol Cell 11:369–391

    Article  CAS  Google Scholar 

  2. Chen KC, Calzone L, Csikasz-Nagy A, Cross FR, Novak B, Tyson JJ (2004) Integrative analysis of cell cycle control in budding yeast. Mol Biol Cell 15:3841–3862

    Article  CAS  Google Scholar 

  3. Barberis M, Klipp E, Vanoni M, Alberghina L (2007) Cell size at S phase initiation: an emergent property of the G1/S network. PLoS Comput Biol 3:e64

    Article  Google Scholar 

  4. Barberis M, Linke C, Adrover MÀ, González-Novo A, Lehrach H, Krobitsch S, Posas F, Klipp E (2012) Sic1 plays a role in timing and oscillatory behaviour of B-type cyclins. Biotechnol Adv 30:108–130

    Article  CAS  Google Scholar 

  5. Kraikivski P, Chen KC, Laomettachit T, Murali T, Tyson JJ (2015) From START to FINISH: computational analysis of cell cycle control in budding yeast. NPJ Syst Biol Appl 1:15016

    Article  Google Scholar 

  6. Li F, Long T, Lu Y, Ouyang Q, Tang C (2004) The yeast cell-cycle network is robustly designed. Proc Natl Acad Sci U S A 101:4781–4786

    Article  CAS  Google Scholar 

  7. Fauré A, Naldi A, Lopez F, Chaouiya C, Ciliberto A, Thieffry D (2009) Modular logical modelling of the budding yeast cell cycle. Mol Biosyst 5:1787–1796

    Google Scholar 

  8. Irons DJ (2009) Logical analysis of the budding yeast cell cycle. J Theor Biol 257:543–559

    Article  CAS  Google Scholar 

  9. Linke C, Chasapi A, González-Novo A, Al Sawad I, Tognetti S, Klipp E, Loog M, Krobitsch S, Posas F, Xenarios I, Barberis M (2017) A Clb/Cdk1-mediated regulation of Fkh2 synchronizes CLB expression in the budding yeast cell cycle. NPJ Syst Biol Appl 3:7

    Article  Google Scholar 

  10. Gombert AK, Nielsen J (2000) Mathematical modelling of metabolism. Curr Opin Biotechnol 11:180–186

    Article  CAS  Google Scholar 

  11. Lewis NE, Nagarajan H, Palsson BO (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat Rev Microbiol 10:291–305

    Article  CAS  Google Scholar 

  12. Thomas R (1973) Boolean formalization of genetic control circuits. J Theor Biol 42:563–585

    Article  CAS  Google Scholar 

  13. Albert I, Thakar J, Li S, Zhang R, Albert R (2008) Boolean network simulations for life scientists. Source Code Biol Med 3:16

    Article  Google Scholar 

  14. Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28:245–248

    Article  CAS  Google Scholar 

  15. Lewis NE, Hixson KK, Conrad TM, Lerman JA, Charusanti P, Polpitiya AD, Adkins JN, Schramm G, Purvine SO, Lopez-Ferrer D, Weitz KK, Eils R, König R, Smith RD, Palsson BØ (2010) Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol Syst Biol 6:390

    Article  Google Scholar 

  16. Covert MW, Schilling CH, Palsson B (2001) Regulation of gene expression in flux balance models of metabolism. J Theor Biol 213:73–88

    Article  CAS  Google Scholar 

  17. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42(Database issue):D199–D205

    Article  CAS  Google Scholar 

  18. Ebrahim A, Lerman JA, Palsson BO, Hyduke DR (2013) COBRApy: COnstraints-based reconstruction and analysis for python. BMC Syst Biol 7:74

    Article  Google Scholar 

  19. Aung HW, Henry SA, Walker LP (2013) Revising the representation of fatty acid, glycerolipid, and glycerophospholipid metabolism in the consensus model of yeast metabolism. Ind Biotechnol (New Rochelle NY) 9:215–228

    Article  CAS  Google Scholar 

  20. Ewald JC, Kuehne A, Zamboni N, Skotheim JM (2016) The yeast cyclin-dependent kinase routes carbon fluxes to fuel cell cycle progression. Mol Cell 62:532–545

    Article  CAS  Google Scholar 

  21. Wittmann C, Hans M, van Winden WA, Ras C, Heijnen JJ (2005) Dynamics of intracellular metabolites of glycolysis and TCA cycle during cell-cycle-related oscillation in Saccharomyces cerevisiae. Biotechnol Bioeng 89:839–847

    Article  CAS  Google Scholar 

  22. Choi HS, Su WM, Morgan JM, Han GS, Xu Z, Karanasios E, Siniossoglou S, Carman GM (2011) Phosphorylation of phosphatidate phosphatase regulates its membrane association and physiological functions in Saccharomyces cerevisiae: identification of SER(602), THR(723), AND SER(744) as the sites phosphorylated by CDC28 (CDK1)-encoded cyclin-dependent kinase. J Biol Chem 286:1486–1498

    Article  CAS  Google Scholar 

  23. Storms RK, Ord RW, Greenwood MT, Mirdamadi B, Chu FK, Belfort M (1984) Cell cycle-dependent expression of thymidylate synthase in Saccharomyces cerevisiae. Mol Cell Biol 4:2858–2864

    Article  CAS  Google Scholar 

  24. White JH, Green SR, Barker DG, Dumas LB, Johnston LH (1987) The CDC8 transcript is cell cycle regulated in yeast and is expressed coordinately with CDC9 and CDC21 at a point preceding histone transcription. Exp Cell Res 171:223–231

    Article  CAS  Google Scholar 

  25. Chien CY, Chou CK, Su JY (2009) Ung1p-mediated uracil-base excision repair in mitochondria is responsible for the petite formation in thymidylate deficient yeast. FEBS Lett 583:1499–1504

    Article  CAS  Google Scholar 

  26. de Bruin RA, Kalashnikova TI, Chahwan C, McDonald WH, Wohlschlegel J, Yates J 3rd, Russell P, Wittenberg C (2006) Constraining G1-specific transcription to late G1 phase: the MBF-associated corepressor Nrm1 acts via negative feedback. Mol Cell 23:483–496

    Article  Google Scholar 

  27. Flory MR, Lee H, Bonneau R, Mallick P, Serikawa K, Morris DR, Aebersold R (2006) Quantitative proteomic analysis of the budding yeast cell cycle using acid-cleavable isotope-coded affinity tag reagents. Proteomics 6:6146–6157

    Article  CAS  Google Scholar 

  28. Rossell S, Solem C, Jensen PR, Heijnen JJ (2011) Towards a quantitative prediction of the fluxome from the proteome. Metab Eng 13:253–262

    Article  CAS  Google Scholar 

  29. Hartwell LH (1973) Three additional genes required for deoxyribonucleic acid synthesis in Saccharomyces cerevisiae. J Bacteriol 115:966–974

    Article  CAS  Google Scholar 

  30. Mondeel TDGA, Crémazy F, Barberis M (2018) GEMMER: GEnome-wide tool for Multi-scale Modeling data Extraction and Representation for Saccharomyces cerevisiae. Bioinformatics 34:2147–2149

    Google Scholar 

  31. Birch EW, Udell M, Covert MW (2014) Incorporation of flexible objectives and time-linked simulation with flux balance analysis. J Theor Biol 345:12–21

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Systems Biology Grant of the University of Surrey to M.B., and by the SILS Starting Grant of the University of Amsterdam (UvA) and by the UvA-Systems Biology Research Priority Area Grant to M.B.

Author contribution: M.B. conceived the idea and designed the study. L.v.d.Z. and M.B. designed the computational analyses. L.v.d.Z. programmed the source code and performed the simulations. L.v.d.Z. and M.B. analyzed the data. L.v.d.Z. and M.B. wrote the chapter. M.B. provided scientific leadership and supervised the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Barberis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

van der Zee, L., Barberis, M. (2019). Advanced Modeling of Cellular Proliferation: Toward a Multi-scale Framework Coupling Cell Cycle to Metabolism by Integrating Logical and Constraint-Based Models. In: Oliver, S.G., Castrillo, J.I. (eds) Yeast Systems Biology. Methods in Molecular Biology, vol 2049. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9736-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9736-7_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9735-0

  • Online ISBN: 978-1-4939-9736-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics