Skip to main content

Analysis of Complete Neuroblast Cell Lineages in the Drosophila Embryonic Brain via DiI Labeling

  • Protocol
  • First Online:
Brain Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2047))

Abstract

Proper functioning of the brain relies on an enormous diversity of neural cells generated by neural stem cell-like neuroblasts (NBs). Each of the about 100 NBs in each side of brain generates a nearly invariant and unique cell lineage, consisting of specific neural cell types that develop in defined time periods. In this chapter we describe a method that labels entire NB lineages in the embryonic brain. Clonal DiI labeling allows us to follow the development of an NB lineage starting from the neuroectodermal precursor cell up to the fully developed cell clone in the first larval instar brain. We also show how to ablate individual cells within an NB clone, which reveals information about the temporal succession in which daughter cells are generated. Finally, we describe how to combine clonal DiI labeling with fluorescent antibody staining that permits relating protein expression to individual cells within a labeled NB lineage. These protocols make it feasible to uncover precise lineage relationships between a brain NB and its daughter cells, and to assign gene expression to individual clonal cells. Such lineage-based information is a critical key for understanding the cellular and molecular mechanisms that underlie specification of cell fates in spatial and temporal dimension in the embryonic brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Technau GM, Berger C, Urbach R (2006) Generation of cell diversity and segmental pattern in the embryonic central nervous system of Drosophila. Dev Dyn 235:861–869

    Article  CAS  Google Scholar 

  2. Skeath JB (1999) At the nexus between pattern formation and cell-type specification: the generation of individual neuroblast fates in the Drosophila embryonic central nervous system. BioEssays 21:922–931

    Article  CAS  Google Scholar 

  3. Urbach R, Technau GM (2004) Neuroblast formation and patterning during early brain development in Drosophila. BioEssays 26:739–751

    Article  CAS  Google Scholar 

  4. Jacob J, Maurange C, Gould AP (2008) Temporal control of neuronal diversity: common regulatory principles in insects and vertebrates? Development 135:3481–3489

    Article  CAS  Google Scholar 

  5. Kao C-F, Lee T (2010) Birth time/order-dependent neuron type specification. Curr Opin Neurobiol 20:14–21

    Article  CAS  Google Scholar 

  6. Lin S, Lee T (2012) Generating neuronal diversity in the Drosophila central nervous system. Dev Dyn 241:57–68

    Article  Google Scholar 

  7. Skeath JB, Thor S (2003) Genetic control of Drosophila nerve cord development. Curr Opin Neurobiol 13:8–15

    Article  CAS  Google Scholar 

  8. Doe CQ (2017) Temporal Patterning in the Drosophila CNS. Annu Rev Cell Dev Biol 33:219–240

    Article  CAS  Google Scholar 

  9. Baumgardt M, Karlsson D, Terriente J et al (2009) Neuronal subtype specification within a lineage by opposing temporal feed-forward loops. Cell 139:969–982

    Article  CAS  Google Scholar 

  10. Jefferis GS, Marin EC, Stocker RF et al (2001) Target neuron prespecification in the olfactory map of Drosophila. Nature 414:204–208

    Article  CAS  Google Scholar 

  11. Lai S-L, Awasaki T, Ito K et al (2008) Clonal analysis of Drosophila antennal lobe neurons: diverse neuronal architectures in the lateral neuroblast lineage. Development 135:2883–2893

    Article  CAS  Google Scholar 

  12. Pearson BJ, Doe CQ (2004) Specification of temporal identity in the developing nervous system. Annu Rev Cell Dev Biol 20:619–647

    Article  CAS  Google Scholar 

  13. Yu H-H, Lee T (2007) Neuronal temporal identity in post-embryonic Drosophila brain. Trends Neurosci 30:520–526

    Article  CAS  Google Scholar 

  14. Yu H-H, Kao C-F, He Y et al (2010) A complete developmental sequence of a Drosophila neuronal lineage as revealed by twin-spot MARCM. PLoS Biol 8

    Google Scholar 

  15. Bahrampour S, Gunnar E, Jonsson C et al (2017) Neural lineage progression controlled by a temporal proliferation program. Dev Cell 43:332–348

    Article  CAS  Google Scholar 

  16. Walsh KT, Doe CQ (2017) Drosophila embryonic type II neuroblasts: origin, temporal patterning, and contribution to the adult central complex. Development 144:4552–4562

    Article  CAS  Google Scholar 

  17. Golic KG, Lindquist S (1989) The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59:499–509

    Article  CAS  Google Scholar 

  18. Xu T, Rubin GM (1993) Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117:1223–1237

    CAS  PubMed  Google Scholar 

  19. Evans CJ, Olson JM, Ngo KT et al (2009) G-TRACE: rapid Gal4-based cell lineage analysis in Drosophila. Nat Methods 6:603–605

    Article  CAS  Google Scholar 

  20. Lai S-L, Lee T (2006) Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat Neurosci 9:703–709

    Article  CAS  Google Scholar 

  21. Lee T, Luo L (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22:451–461

    Article  CAS  Google Scholar 

  22. Lee T (2009) New genetic tools for cell lineage analysis in Drosophila. Nat Methods 6:566–568

    Article  CAS  Google Scholar 

  23. Yu HH, Chen CH, Shi L et al (2009) Twin-spot MARCM to reveal the developmental origin and identity of neurons. Nat Neurosci 12:947–953

    Article  CAS  Google Scholar 

  24. Larsen C, Shy D, Spindler SR et al (2009) Patterns of growth, axonal extension and axonal arborization of neuronal lineages in the developing Drosophila brain. Dev Biol 335:289–304

    Article  CAS  Google Scholar 

  25. Luo L (2005) A practical guide: single-neuron labeling using genetic methods. In: Yuste R, Konnerth A (eds) Imaging in neuroscience and development. A laboratory manual. Cold Spring Harbor Laboratory Press, New York, NY, pp 99–110

    Google Scholar 

  26. Honig MG, Hume RI (1986) Fluorescent carbocyanine dyes allow living neurons of identified origin to be studied in long-term cultures. J Cell Biol 103:171–187

    Article  CAS  Google Scholar 

  27. Honig MG, Hume RI (1989) Dil and DiO: versatile fluorescent dyes for neuronal labelling and pathway tracing. Trends Neurosci 12:333–340

    Article  CAS  Google Scholar 

  28. Bossing T, Udolph G, Doe CQ et al (1996) The embryonic central nervous system lineages of Drosophila melanogaster. I Neuroblast lineages derived from the ventral half of the neuroectoderm. Dev Biol 179:41–64

    Article  CAS  Google Scholar 

  29. Schmidt H, Rickert C, Bossing T et al (1997) The embryonic central nervous system lineages of Drosophila melanogaster. II Neuroblast lineages derived from the dorsal part of the neuroectoderm. Dev Biol 189:186–204

    Article  CAS  Google Scholar 

  30. Schmid A, Chiba A, Doe CQ (1999) Clonal analysis of Drosophila embryonic neuroblasts: neural cell types, axon projections and muscle targets. Development 126:4653–4689

    CAS  PubMed  Google Scholar 

  31. Birkholz O, Rickert C, Nowak J et al (2015) Bridging the gap between postembryonic cell lineages and identified embryonic neuroblasts in the ventral nerve cord of Drosophila melanogaster. Biol Open 4:420–434

    Article  Google Scholar 

  32. Rickert C, Lüer K, Vef O, Technau GM (2018) Progressive derivation of serially homologous neuroblast lineages in the gnathal CNS of Drosophila. PLoS One 13:e0191453

    Article  Google Scholar 

  33. Kunz T, Kraft KF, Technau GM, Urbach R (2012) Origin of Drosophila mushroom body neuroblasts and generation of divergent embryonic lineages. Development 139:2510–2522

    Article  CAS  Google Scholar 

  34. Bossing T, Technau GM (1994) The fate of the CNS midline progenitors in Drosophila as revealed by a new method for single cell labelling. Development 120:1895–1906

    CAS  PubMed  Google Scholar 

  35. Campos-Ortega JA, Hartenstein V (1997) The embryonic development of Drosophila melanogaster. Springer, Berlin

    Book  Google Scholar 

  36. Elberger AJ, Honig MG (1990) Double-labeling of tissue containing the carbocyanine dye DiI for immunocytochemistry. J Histochem Cytochem 38:735–739

    Article  CAS  Google Scholar 

  37. Maranto AR (1982) Neuronal mapping: a photooxidation reaction makes Lucifer yellow useful for electron microscopy. Science 217:953–955

    Article  CAS  Google Scholar 

  38. von Bartheld CS, Cunningham DE, Rubel EW (1990) Neuronal tracing with DiI: decalcification, cryosectioning, and photoconversion for light and electron microscopic analysis. J Histochem Cytochem 38:725–733

    Article  Google Scholar 

  39. Foe VE (1989) Mitotic domains reveal early commitment of cells in Drosophila embryos. Development 107:1–22

    CAS  PubMed  Google Scholar 

  40. Urbach R, Schnabel R, Technau GM (2003) The pattern of neuroblast formation, mitotic domains and proneural gene expression during early brain development in Drosophila. Development 130:3589–3606

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Thomas Kunz, Martin Steimel, and Christof Rickert for sharing protocols and considerable expertise, and David Jussen for critically reading the manuscript. We are grateful to Gerd Technau for his general support. This work was supported by grants from the Deutsche Forschungsgemeinschaft (UR163/2-1 and UR163/3-1) and by a research stipend to K.F.K. from the FTN of the University Mainz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Urbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kraft, K.F., Urbach, R. (2020). Analysis of Complete Neuroblast Cell Lineages in the Drosophila Embryonic Brain via DiI Labeling. In: Sprecher, S. (eds) Brain Development. Methods in Molecular Biology, vol 2047. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9732-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9732-9_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9731-2

  • Online ISBN: 978-1-4939-9732-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics