Transplantation of Neural Tissue: Quail–Chick Chimeras

  • Andrea StreitEmail author
  • Claudio D. Stern
Part of the Methods in Molecular Biology book series (MIMB, volume 2047)


Tissue transplantation is an important approach in developmental neurobiology to determine cell fate, to uncover inductive interactions required for tissue specification and patterning as well as to establish tissue competence and commitment. Combined with state-of-the-art molecular approaches, transplantation assays have been instrumental for the discovery of gene regulatory networks controlling cell fate choices and how such networks change over time. Avian species are among the favorite model systems for these approaches because of their accessibility and relatively large size. Here we describe two culture techniques used to generate quail–chick chimeras at different embryonic stages and methods to distinguish graft and donor tissue.


Chick Brain Central nervous system Neural plate Neural tube Organizer Peripheral nervous system Quail Transplantation 



This work is supported by the BBSRC, NIH, and ERC. We thank Anneliese Norris for assistance with New culture photography.


  1. 1.
    Stern CD (2005) Neural induction: Old problem, new findings, yet more questions. Development 132:2007–2021CrossRefGoogle Scholar
  2. 2.
    Waddington CH (1934) Experiments on embryonic induction. Part I: the competence of the extra-embryonic ectoderm. Part II: experiments on coagulated organisers in the chick. Part III: a note on inductions by chick primitive streak transplanted to the rabbit embryo. J Exp Biol 11:211–227Google Scholar
  3. 3.
    Spemann H, Mangold H (1924) Über induktion von embryonalanlagen durch implantation artfremder organisatoren. Arch Mikroskop Anat Entwicklungsmech 100:599–638CrossRefGoogle Scholar
  4. 4.
    Cobos I, Shimamura K, Rubenstein JL, Martinez S, Puelles L (2001) Fate map of the avian anterior forebrain at the four-somite stage, based on the analysis of quail-chick chimeras. Dev Biol 239:46–67CrossRefGoogle Scholar
  5. 5.
    Fernandez-Garre P, Rodriguez-Gallardo L, Gallego-Diaz V, Alvarez IS, Puelles L (2002) Fate map of the chicken neural plate at stage 4. Development 129:2807–2822PubMedGoogle Scholar
  6. 6.
    Garcia-Martinez V, Alvarez IS, Schoenwolf GC (1993) Locations of the ectodermal and nonectodermal subdivisions of the epiblast at stages 3 and 4 of avian gastrulation and neurulation. J Exp Zool 267:431–446CrossRefGoogle Scholar
  7. 7.
    Eagleson GW, Harris WA (1990) Mapping of the presumptive brain regions in the neural plate of xenopus laevis. J Neurobiol 21:427–440CrossRefGoogle Scholar
  8. 8.
    Vieira C, Pombero A, Garcia-Lopez R, Gimeno L, Echevarria D, Martinez S (2010) Molecular mechanisms controlling brain development: an overview of neuroepithelial secondary organizers. Int J Dev Biol 54:7–20CrossRefGoogle Scholar
  9. 9.
    Couly G, Le Douarin NM (1988) The fate map of the cephalic neural primordium at the presomitic to the 3-somite stage in the avian embryo. Development 103:101–113PubMedGoogle Scholar
  10. 10.
    Couly G, Le Douarin NM (1990) Head morphogenesis in embryonic avian chimeras: evidence for a segmental pattern in the ectoderm corresponding to the neuromeres. Development 108:543–558PubMedGoogle Scholar
  11. 11.
    Couly GF, Le Douarin NM (1985) Mapping of the early neural primordium in quail-chick chimeras. I Developmental relationships between placodes, facial ectoderm, and prosencephalon. Dev Biol 110:422–439CrossRefGoogle Scholar
  12. 12.
    Couly GF, Le Douarin NM (1987) Mapping of the early neural primordium in quail-chick chimeras. II The prosencephalic neural plate and neural folds: Implications for the genesis of cephalic human congenital abnormalities. Dev Biol 120:198–214CrossRefGoogle Scholar
  13. 13.
    Martinez S, Wassef M, Alvarado-Mallart RM (1991) Induction of a mesencephalic phenotype in the 2-day-old chick prosencephalon is preceded by the early expression of the homeobox gene en. Neuron 6:971–981CrossRefGoogle Scholar
  14. 14.
    Baker CV, Stark MR, Marcelle C, Bronner-Fraser M (1999) Competence, specification and induction of pax-3 in the trigeminal placode. Development 126:147–156PubMedGoogle Scholar
  15. 15.
    Bhattacharyya S, Bronner-Fraser M (2008) Competence, specification and commitment to an olfactory placode fate. Development 135:4165–4177CrossRefGoogle Scholar
  16. 16.
    Groves AK, Bronner-Fraser M (2000) Competence, specification and commitment in otic placode induction. Development 127:3489–3499PubMedGoogle Scholar
  17. 17.
    Anderson C, Khan MA, Wong F, Solovieva T, Oliveira NM, Baldock RA, Tickle C, Burt DW, Stern CD (2016) A strategy to discover new organizers identifies a putative heart organizer. Nat Commun 7:12656CrossRefGoogle Scholar
  18. 18.
    Trevers KE, Prajapati RS, Hintze M, Stower MJ, Strobl AC, Tambalo M, Ranganathan R, Moncaut N, Khan MAF, Stern CD, Streit A (2017) Neural induction by the node and placode induction by head mesoderm share an initial state resembling neural plate border and es cells. Proc Natl Acad Sci U S A 115:355–360CrossRefGoogle Scholar
  19. 19.
    Hintze M, Prajapati RS, Tambalo M, Christophorou NAD, Anwar M, Grocott T, Streit A (2017) Cell interactions, signals and transcriptional hierarchy governing placode progenitor induction. Development 144:2810–2823CrossRefGoogle Scholar
  20. 20.
    Guthrie S, Prince V, Lumsden A (1993) Selective dispersal of avian rhombomere cells in orthotopic and heterotopic grafts. Development 118:527–538PubMedGoogle Scholar
  21. 21.
    Fekete DM, Cepko CL (1993) Retroviral infection coupled with tissue transplantation limits gene transfer in the chicken embryo. Proc Natl Acad Sci U S A 90:2350–2354CrossRefGoogle Scholar
  22. 22.
    Barraud P, Seferiadis AA, Tyson LD, Zwart MF, Szabo-Rogers HL, Ruhrberg C, Liu KJ, Baker CV (2010) Neural crest origin of olfactory ensheathing glia. Proc Natl Acad Sci U S A 107:21040–21045CrossRefGoogle Scholar
  23. 23.
    Sabado V, Barraud P, Baker CV, Streit A (2012) Specification of gnrh-1 neurons by antagonistic fgf and retinoic acid signaling. Dev Biol 362:254–262CrossRefGoogle Scholar
  24. 24.
    Feulgen R, Rossenbeck H (1924) Mikroskopisch-chemischer nachweis einer nukleinsaeure vom typus der thymonukleinsaeure und die daruf beruhende elecktive faerbung von zellkernen in miroskopischen praeparaten. Hoppe Seylers Z Physiol Chem 135:203–248CrossRefGoogle Scholar
  25. 25.
    Teillet MA, Ziller C, Le Douarin NM (2008) Quail-chick chimeras. Methods Mol Biol 461:337–350CrossRefGoogle Scholar
  26. 26.
    Tanaka H (1990) Selective motoneuron outgrowth from the cord in the avian embryo. Neurosci Res Suppl 13:S147–S151CrossRefGoogle Scholar
  27. 27.
    Streit A, Stern CD (2001) Combined whole-mount in situ hybridization and immunohistochemistry in avian embryos. Methods 23:339–344CrossRefGoogle Scholar
  28. 28.
    Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morph 88:49–92CrossRefGoogle Scholar
  29. 29.
    Stern CD, Ireland GW (1981) An integrated experimental study of endoderm formation in avian embryos. Anat Embryol (Berl) 163:245–263CrossRefGoogle Scholar
  30. 30.
    New DAT (1955) A new technique for the cultivation of the chick embryo in vitro. J Embryol Exp Morph 3:326–331Google Scholar
  31. 31.
    Lassiter RN, Dude CM, Reynolds SB, Winters NI, Baker CV, Stark MR (2007) Canonical wnt signaling is required for ophthalmic trigeminal placode cell fate determination and maintenance. Dev Biol 308:392–406CrossRefGoogle Scholar
  32. 32.
    Storey KG, Selleck MA, Stern CD (1995) Neural induction and regionalisation by different subpopulations of cells in hensen’s node. Development 121:417–428PubMedGoogle Scholar
  33. 33.
    Le Douarin N, Dieterlen-Lievre F, Creuzet S, Teillet MA (2008) Quail-chick transplantations. Methods Cell Biol 87:19–58CrossRefGoogle Scholar
  34. 34.
    Izpisua-Belmonte JC, De Robertis EM, Storey KG, Stern CD (1993) The homeobox gene goosecoid and the origin of organizer cells in the early chick blastoderm. Cell 74:645–659CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Faculty of Dental, Oral and Craniofacial Sciences, Centre for Craniofacial and Regenerative BiologyKing’s College LondonLondonUK
  2. 2.Department of Cell and Developmental BiologyUniversity College LondonLondonUK

Personalised recommendations