Advertisement

Morpholino Studies in Xenopus Brain Development

  • Jennifer E. Bestman
  • Hollis T. ClineEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2047)

Abstract

Antisense morpholino oligonucleotides (MOs) have become a valuable method to knockdown protein levels, to block with mRNA splicing and to interfere with miRNA function. MOs are widely used to alter gene expression in development of Xenopus and Zebrafish, where they are typically injected into the fertilized egg or blastomeres. Here we present methods to use electroporation to target delivery of MOs to the central nervous system of Xenopus laevis or Xenopus tropicalis tadpoles. Briefly, MO electroporation is accomplished by injecting MO solution into the brain ventricle and driving the MOs into cells of the brain with current passing between 2 platinum plate electrodes, positioned on either side of the target brain area. The method is relatively straightforward and uses standard equipment found in many neuroscience labs. A major advantage of electroporation is that it allows spatial and temporal control of MO delivery and therefore knockdown. Co-electroporation of MOs with cell type-specific fluorescent protein expression plasmids allows morphological analysis of cellular phenotypes. Furthermore, co-electroporation of MOs with rescuing plasmids allows assessment of specificity of the knockdown and phenotypic outcome. By combining MO-mediated manipulations with sophisticated assays of neuronal function, such as electrophysiological recording, behavioral assays, or in vivo time-lapse imaging of neuronal development, the functions of specific proteins and miRNAs within the developing nervous system can be elucidated. These methods can be adapted to apply antisense morpholinos to study protein and RNA function in a variety of complex tissues.

Keywords

Xenopus Electroporation Morpholino oligonucleotide Antisense Knockdown In vivo imaging Neuron Brain CNS phenotype 

References

  1. 1.
    Staton AA, Giraldez AJ (2011) Use of target protector morpholinos to analyze the physiological roles of specific miRNA-mRNA pairs in vivo. Nat Protoc 6(12):2035–2049.  https://doi.org/10.1038/nprot.2011.423CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Draper BW, Morcos PA, Kimmel CB (2001) Inhibition of zebrafish fgf8 pre-mRNA splicing with morpholino oligos: a quantifiable method for gene knockdown. Genesis 30(3):154–156. Epub 2001/07/31CrossRefGoogle Scholar
  3. 3.
    Morcos PA (2007) Achieving targeted and quantifiable alteration of mRNA splicing with Morpholino oligos. Biochem Biophys Res Commun 358(2):521–527.  https://doi.org/10.1016/j.bbrc.2007.04.172. Epub 2007/05/12CrossRefPubMedGoogle Scholar
  4. 4.
    Choi WY, Giraldez AJ, Schier AF (2007) Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science 318(5848):271–274.  https://doi.org/10.1126/science.1147535CrossRefPubMedGoogle Scholar
  5. 5.
    Kloosterman WP, Lagendijk AK, Ketting RF, Moulton JD, Plasterk RH (2007) Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol 5(8):e203.  https://doi.org/10.1371/journal.pbio.0050203. Epub 2007/08/07CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bruno IG, Jin W, Cote GJ (2004) Correction of aberrant FGFR1 alternative RNA splicing through targeting of intronic regulatory elements. Hum Mol Genet 13(20):2409–2420.  https://doi.org/10.1093/hmg/ddh272. Epub 2004/08/31CrossRefPubMedGoogle Scholar
  7. 7.
    Kimmel CB, Law RD (1985) Cell lineage of zebrafish blastomeres. I. Cleavage pattern and cytoplasmic bridges between cells. Dev Biol 108(1):78–85CrossRefGoogle Scholar
  8. 8.
    Heasman J, Kofron M, Wylie C (2000) Beta-catenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach. Dev Biol 222(1):124–134.  https://doi.org/10.1006/dbio.2000.9720. [pii] S0012-1606(00)99720-3. Epub 2000/07/08CrossRefPubMedGoogle Scholar
  9. 9.
    Tandon P, Showell C, Christine K, Conlon FL (2012) Morpholino injection in Xenopus. Methods Mol Biol 843:29–46.  https://doi.org/10.1007/978-1-61779-523-7_4. Epub 2012/01/10CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Robu ME, Larson JD, Nasevicius A, Beiraghi S, Brenner C, Farber SA et al (2007) p53 activation by knockdown technologies. PLoS Genet 3(5):e78.  https://doi.org/10.1371/journal.pgen.0030078. Epub 2007/05/29CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hardy S, Legagneux V, Audic Y, Paillard L (2010) Reverse genetics in eukaryotes. Biol Cell 102(10):561–580.  https://doi.org/10.1042/BC20100038. Epub 2010/09/04CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Akcakaya P, Bobbin ML, Guo JA, Malagon-Lopez J, Clement K, Garcia SP et al (2018) In vivo CRISPR editing with no detectable genome-wide off-target mutations. Nature 561(7723):416–419.  https://doi.org/10.1038/s41586-018-0500-9CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Summerton JE (2007) Morpholino, siRNA, and S-DNA compared: impact of structure and mechanism of action on off-target effects adn sequence specificity. Curr Top Med Chem 7:651–660CrossRefGoogle Scholar
  14. 14.
    Chen CM, Chiu SL, Shen W, Cline HT (2009) Co-expression of Argonaute2 enhances short hairpin RNA-induced RNA interference in Xenopus CNS neurons in vivo. Front Neurosci 3:63.  https://doi.org/10.3389/neuro.17.001.2009. Epub 2009/01/01CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lund E, Sheets MD, Imboden SB, Dahlberg JE (2011) Limiting ago protein restricts RNAi and microRNA biogenesis during early development in Xenopus laevis. Genes Dev 25(11):1121–1131.  https://doi.org/10.1101/gad.2038811. Epub 2011/05/18CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Eisen JS, Smith JC (2008) Controlling morpholino experiments: don’t stop making antisense. Development 135(10):1735–1743.  https://doi.org/10.1242/dev.001115. Epub 2008/04/12CrossRefPubMedGoogle Scholar
  17. 17.
    Stainier DYR, Raz E, Lawson ND, Ekker SC, Burdine RD, Eisen JS et al (2017) Guidelines for morpholino use in zebrafish. PLoS Genet 13(10):e1007000.  https://doi.org/10.1371/journal.pgen.1007000CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ohnuma S-i, Mann F, Boy S, Perron M, Harris WA (2002) Lipofection strategy for the study of Xenopus retinal development. Methods 28:411–419CrossRefGoogle Scholar
  19. 19.
    Ando H, Okamoto H (2006) Efficient transfection strategy for the spatiotemporal control of gene expression in zebrafish. Mar Biotechnol 8(3):295–303.  https://doi.org/10.1007/s10126-005-5138-6. Epub 2006/04/15CrossRefPubMedGoogle Scholar
  20. 20.
    Sasagawa S, Takabatake T, Takabatake Y, Muramatsu T, Takeshima K (2002) Improved mRNA electroporation method for Xenopus neurula embryos. Genesis 33(2):81–85.  https://doi.org/10.1002/gene.10094. Epub 2002/07/12CrossRefPubMedGoogle Scholar
  21. 21.
    Eide FF, Eisenberg SR, Sanders TA (2000) Electroporation-mediated gene transfer in free-swimming embryonic Xenopus laevis. FEBS Lett 486:29–32CrossRefGoogle Scholar
  22. 22.
    Bestman JE, Ewald RC, Chiu SL, Cline HT (2006) In vivo single-cell electroporation for transfer of DNA and macromolecules. Nat Protoc 1(3):1267–1272.  https://doi.org/10.1038/nprot.2006.186CrossRefPubMedGoogle Scholar
  23. 23.
    Falk J, Drinjakovic J, Leung KM, Dwivedy A, Regan AG, Piper M et al (2007) Electroporation of cDNA/Morpholinos to targeted areas of embryonic CNS in Xenopus. BMC Dev Biol 7(1):107.  https://doi.org/10.1186/1471-213X-7-107. Epub 2007/09/29CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Haas K, Jensen K, Sin WC, Foa L, Cline HT (2002) Targeted electroporation in Xenopus tadpoles in vivo—from single cells to the entire brain. Differentiation 70(4–5):148–154.  https://doi.org/10.1046/j.1432-0436.2002.700404.x. Epub 2002/07/31CrossRefPubMedGoogle Scholar
  25. 25.
    Haas K, Sin W-C, Javaherian A, Li Z, Cline HT (2001) Single-cell electroporation for gene transfer in vivo. Neuron 29(3):583–591CrossRefGoogle Scholar
  26. 26.
    Javaherian A, Cline HT (2005) Coordinated motor neuron axon growth and neuromuscular synaptogenesis are promoted by CPG15 in vivo. Neuron 45(4):505–512.  https://doi.org/10.1016/j.neuron.2004.12.051CrossRefPubMedGoogle Scholar
  27. 27.
    Ruthazer ES, Li J, Cline HT (2006) Stabilization of axon branch dynamics by synaptic maturation. J Neurosci 26(13):3594–3603.  https://doi.org/10.1523/JNEUROSCI.0069-06.2006. Epub 2006/03/31CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Mende M, Christophorou NA, Streit A (2008) Specific and effective gene knock-down in early chick embryos using morpholinos but not pRFPRNAi vectors. Mech Dev 125(11–12):947–962.  https://doi.org/10.1016/j.mod.2008.08.005CrossRefPubMedGoogle Scholar
  29. 29.
    Bestman JE, Huang LC, Lee-Osbourne J, Cheung P, Cline HT (2015) An in vivo screen to identify candidate neurogenic genes in the developing Xenopus visual system. Dev Biol 408(2):269–291.  https://doi.org/10.1016/j.ydbio.2015.03.010CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Osterele A. Pipette cookbook 2018 P-97 & P-1000 micropipette pullers [pdf]. Sutter instruments; 2018 [cited 2018 14 October]. Rev. F. https://www.sutter.com/PDFs/pipette_cookbook.pdf
  31. 31.
    Koster RW, Fraser SE (2001) Tracing transgene expression in living zebrafish embryos. Dev Biol 233(2):329–346.  https://doi.org/10.1006/dbio.2001.0242. [pii] S0012-1606(01)90242-8. Epub 2001/05/05CrossRefPubMedGoogle Scholar
  32. 32.
    Nieuwkoop PD, Faber J (1994) Normal table of Xenopus Laevis (Daudin): a systematical & chronological survey of the development from the fertilized egg till the end of metamorphosis, 1st edn. Garland Science, New YorkGoogle Scholar
  33. 33.
    Bedell VM, Westcot SE, Ekker SC (2011) Lessons from morpholino-based screening in zebrafish. Brief Funct Genomics 10(4):181–188.  https://doi.org/10.1093/bfgp/elr021. Epub 2011/07/13CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kos R, Tucker RP, Hall R, Duong TD, Erickson CA (2003) Methods for introducing morpholinos into the chicken embryo. Dev Dyn 226(3):470–477.  https://doi.org/10.1002/dvdy.10254. Epub 2003/03/06CrossRefPubMedGoogle Scholar
  35. 35.
    Faulkner RL, Wishard TJ, Thompson CK, Liu HH, Cline HT (2015) FMRP regulates neurogenesis in vivo in Xenopus laevis tadpoles. eNeuro 2(1):e0055.  https://doi.org/10.1523/ENEURO.0055-14.2014CrossRefPubMedGoogle Scholar
  36. 36.
    Ewald RC, Van Keuren-Jensen KR, Aizenman CD, Cline HT (2008) Roles of NR2A and NR2B in the development of dendritic arbor morphology in vivo. J Neurosci 28(4):850–861.  https://doi.org/10.1523/JNEUROSCI.5078-07.2008. Epub 2008/01/25CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Bestman JE, Lee-Osbourne J, Cline HT (2012) In vivo time-lapse imaging of cell proliferation and differentiation in the optic tectum of Xenopus laevis tadpoles. J Comp Neurol 520(2):401–433.  https://doi.org/10.1002/cne.22795. Epub 2011/11/25CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Sauka-Spengler T, Barembaum M (2008) Gain- and loss-of-function approaches in the chick embryo. Methods Cell Biol 87:237–256.  https://doi.org/10.1016/s0091-679x(08)00212-4CrossRefPubMedGoogle Scholar
  39. 39.
    Bestman JE, Cline HT (2008) The RNA binding protein CPEB regulates dendrite morphogenesis and neuronal circuit assembly in vivo. Proc Natl Acad Sci U S A 105(51):20494–20499.  https://doi.org/10.1073/pnas.0806296105. Epub 2008/12/17CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Chiu S-L, Chen C-M, Cline HT (2008) Insulin receptor signaling regulates synapse number, dendritic plasticity, and circuit function in vivo. Neuron 58(5):708–719.  https://doi.org/10.1016/j.neuron.2008.04.014. Epub 2008/06/14CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Shen W, McKeown CR, Demas JA, Cline HT (2011) Inhibition to excitation ratio regulates visual system responses and behavior in vivo. J Neurophysiol 106(5):2285–2302.  https://doi.org/10.1152/jn.00641.2011. [pii] jn.00641.2011. Epub 2011/07/29CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Sharma P, Cline HT (2010) Visual activity regulates neural progenitor cells in developing xenopus CNS through musashi1. Neuron 68(3):442–455.  https://doi.org/10.1016/j.neuron.2010.09.028. Epub 2010/11/03CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Schwartz N, Schohl A, Ruthazer ES (2011) Activity-dependent transcription of BDNF enhances visual acuity during development. Neuron 70(3):455–467.  https://doi.org/10.1016/j.neuron.2011.02.055. Epub 2011/05/11. [pii] S0896-6273(11)00298-4CrossRefPubMedGoogle Scholar
  44. 44.
    Zhao Y, Ishibashi S, Amaya E (2012) Reverse genetic studies using antisense morpholino oligonucleotides. Methods Mol Biol 917:143–154.  https://doi.org/10.1007/978-1-61779-992-1_8. Epub 2012/09/08CrossRefPubMedGoogle Scholar
  45. 45.
    Rana AA, Collart C, Gilchrist MJ, Smith JC (2006) Defining synphenotype groups in Xenopus tropicalis by use of antisense morpholino oligonucleotides. PLoS Genet 2(11):1751–1772.  https://doi.org/10.1371/journal.pgen.0020193. ARTN e193CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Biology DepartmentWilliam and MaryWilliamsburgUSA
  2. 2.The Dorris Neuroscience CenterThe Scripps Research InstituteLa JollaUSA

Personalised recommendations