Advertisement

In Situ Hybridization and Immunostaining of Xenopus Brain

  • Kai-li Liu
  • Xiu-mei Wang
  • Zi-long Li
  • Ying LiuEmail author
  • Rong-qiao He
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2047)

Abstract

The dynamic expression pattern analysis provides the primary information of gene function. Differences of the RNA and/or protein location will provide valuable information for gene expression regulation. Generally, in situ hybridization (ISH) and immunohistochemistry (IHC) are two main techniques to visualize the locations of gene transcripts and protein products in situ, respectively. Here we describe the protocol for the whole brain dissection, the in situ hybridization, and the immunostaining of the developing Xenopus brain sections. Additionally, we point out the modification of in situ hybridization for microRNA expression detection.

Keywords

Expression pattern Brain dissection Section Immunostaining In situ hybridization Xenopus MicroRNA 

Notes

Acknowledgments

We are grateful to Federico Cremisi for sharing the protocol of in situ hybridization with cryosections. This work was supported by the NSFC No.31271387.

References

  1. 1.
    Harland RM (1991) In situ hybridization: an improved whole-mount method for Xenopus embryos. Methods Cell Biol 36:685–695CrossRefGoogle Scholar
  2. 2.
    Lupo G, Liu Y, Qiu R, Chandraratna RA, Barsacchi G, He RQ, Harris WA (2005) Dorsoventral patterning of the Xenopus eye: a collaboration of Retinoid, Hedgehog and FGF receptor signaling. Development 132:1737–1748CrossRefGoogle Scholar
  3. 3.
    Liu Y, Lupo G, Marchitiello A, Gestri G, He RQ, Banfi S, Barsacchi G (2001) Expression of the Xvax2 gene demarcates presumptive ventral telencephalon and specific visual structures in Xenopus laevis. Mech Dev 100:115–118CrossRefGoogle Scholar
  4. 4.
    Lan L, Liu M, Liu Y, He R (2007) Expression and antibody preparation of POU transcription factor qBrn-1. Protein Pept Lett 14:7–11CrossRefGoogle Scholar
  5. 5.
    Lan L, Liu M, Liu Y, Zhang W, Xue J, Xue Z, He R (2006) Expression of qBrn-1, a new member of the POU gene family, in the early developing nervous system and embryonic kidney. Dev Dyn 235:1107–1114CrossRefGoogle Scholar
  6. 6.
    Saint-Jeannet JP (2017) Whole-mount in situ hybridization of Xenopus embryos. Cold Spring Harbor Protoc 2017:pdb prot097287.  https://doi.org/10.1101/pdb.prot097287CrossRefGoogle Scholar
  7. 7.
    Decembrini S, Bressan D, Vignali R, Pitto L, Mariotti S, Rainaldi G, Wang X, Evangelista M, Barsacchi G, Cremisi F (2009) MicroRNAs couple cell fate and developmental timing in retina. Proc Natl Acad Sci U S A 106(50):21179–21184CrossRefGoogle Scholar
  8. 8.
    Liu K, Liu Y, Mo W, Qiu R, Wang X, Wu JY, He R (2011) MiR-124 regulates early neurogenesis in the optic vesicle and forebrain, targeting NeuroD1. Nucleic Acids Res 39:2869–2879CrossRefGoogle Scholar
  9. 9.
    Qiu R, Liu Y, Wu JY, Liu K, Mo W, He R (2009) Misexpression of miR-196a induces eye anomaly in Xenopus laevis. Brain Res Bull 79:26–31CrossRefGoogle Scholar
  10. 10.
    Qiu R, Liu K, Liu Y, Mo W, Flynt AS, Patton JG, Kar A, Wu JY, He R (2009) The role of miR-124a in early development of the Xenopus eye. Mech Dev 126:804–816CrossRefGoogle Scholar
  11. 11.
    Susaki EA, Tainaka K, Perrin D, Yukinaga H, Kuno A, Ueda HR (2015) Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging. Nat Protocols 10(11):1709–1727CrossRefGoogle Scholar
  12. 12.
    Sive HL, Grainger RM, Richard RM (2002) Early development of Xenopus laevis: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  13. 13.
    Nieuwkoop PD, Faber J (1994) Normal table of Xenopus laevis (Daudin): a systematical and chronological survey of the development from the fertilized egg till the end of metamorphosis. Garland, New YorkGoogle Scholar
  14. 14.
    Kloosterman WP, Wienholds E, de Bruijn E, Kauppinen S, Plasterk RH (2006) In situ detection of miRNAs in animal embryos using LNA modified oligonucleotide probes. Nat Methods 3:27–29CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Kai-li Liu
    • 1
  • Xiu-mei Wang
    • 1
  • Zi-long Li
    • 1
  • Ying Liu
    • 1
    Email author
  • Rong-qiao He
    • 1
  1. 1.State Key Laboratory of Brain and Cognitive Science, Institute of BiophysicsChinese Academy of SciencesBeijingChina

Personalised recommendations