A Simple Method to Identify Ascidian Brain Lineage Cells at Neural Plate Stages Following In Situ Hybridization

  • Clare HudsonEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2047)


The technique of in situ hybridization can be used to visualize the spatial and temporal pattern of gene expression during development. Ascidians are invertebrate chordates that develop with a fixed cell cleavage pattern into a tadpole larvae. The knowledge of the cell lineage allows the earliest steps of cell fate specification to be followed at a single cell resolution. This protocol describes preparation of Ciona intestinalis embryos, classical in situ hybridization protocol coupled with nuclear staining, and a guide to identify gene expression in specific precursors of the developing brain at neural plate stages of development.


Ciona Ascidian Brain Sensory vesicle In situ hybridization Neural plate Development 



The author is a CNRS researcher in the laboratory of Hitoyoshi Yasuo. I would like to thank H. Yasuo and Cathy Sirour for their help and for critical reading of the manuscript. Many thanks to Hiroki Nishida and Shih Yu (Osaka University) for kindly sharing their DAPI staining and mounting protocol and agreeing to publish it in this chapter. This work was supported by Central National de la Recherche Scientifique (CNRS), Sorbonne Université, Sorbonne Université Emegence project (2016), and the Agence Nationale de la Recherche (ANR-09-BLAN-0013-01, ANR-17-CE13-0003).


  1. 1.
    Satoh N, Rokhsar D, Nishikawa T (2014) Chordate evolution and the three-phylum system. Proc Biol Sci 281:20141729CrossRefGoogle Scholar
  2. 2.
    Hashimoto H, Robin FB, Sherrard KM et al (2015) Sequential contraction and exchange of apical junctions drives zippering and neural tube closure in a simple chordate. Dev Cell 32:241–255CrossRefGoogle Scholar
  3. 3.
    Cole AG, Meinertzhagen IA (2004) The central nervous system of the ascidian larva: mitotic history of cells forming the neural tube in late embryonic Ciona intestinalis. Dev Biol 271:239–262CrossRefGoogle Scholar
  4. 4.
    Taniguchi K, Nishida H (2004) Tracing cell fate in brain formation during embryogenesis of the ascidian Halocynthia roretzi. Develop Growth Differ 46:163–180CrossRefGoogle Scholar
  5. 5.
    Brozovic M, Martin C, Dantec C et al (2016) ANISEED 2015: a digital framework for the comparative developmental biology of ascidians. Nucleic Acids Res 44:D808–D818CrossRefGoogle Scholar
  6. 6.
    Brozovic M, Dantec C, Dardaillon J et al (2018) ANISEED 2017: extending the integrated ascidian database to the exploration and evolutionary comparison of genome-scale datasets. Nucleic Acids Res 46:D718–D725CrossRefGoogle Scholar
  7. 7.
    Gilchrist MJ, Sobral D, Khoueiry P et al (2015) A pipeline for the systematic identification of non-redundant full-ORF cDNAs for polymorphic and evolutionary divergent genomes: application to the ascidian Ciona intestinalis. Dev Biol 404:149–163CrossRefGoogle Scholar
  8. 8.
    Lemaire P (2011) Evolutionary crossroads in developmental biology: the tunicates. Development 138:2143–2152CrossRefGoogle Scholar
  9. 9.
    Satou Y, Kawashima T, Shoguchi E et al (2005) An integrated database of the ascidian, Ciona intestinalis: towards functional genomics. Zool Sci 22:837–843CrossRefGoogle Scholar
  10. 10.
    Hudson C (2016) The central nervous system of ascidian larvae. Wiley Interdiscip Rev Dev Biol. Scholar
  11. 11.
    Satoh N (2014) Developmental genomics of Ascidians. Wiley-Blackwell, New YorkGoogle Scholar
  12. 12.
    Satou Y, Imai KS (2015) Gene regulatory systems that control gene expression in the Ciona embryo. Proc Jpn Acad Ser B Phys Biol Sci 91:33–51CrossRefGoogle Scholar
  13. 13.
    Delsuc F, Philippe H, Tsagkogeorga G et al (2018) A phylogenomic framework and timescale for comparative studies of tunicates. BMC Biol 16:39CrossRefGoogle Scholar
  14. 14.
    Hudson C, Yasuo H (2008) Similarity and diversity in mechanisms of muscle fate induction between ascidian species. Biol Cell 100:265–277CrossRefGoogle Scholar
  15. 15.
    Stolfi A, Lowe EK, Racioppi C et al (2014) Divergent mechanisms regulate conserved cardiopharyngeal development and gene expression in distantly related ascidians. elife 3:e03728CrossRefGoogle Scholar
  16. 16.
    Ryan K, Lu Z, Meinertzhagen IA (2016) The CNS connectome of a tadpole larva of Ciona intestinalis (L.) highlights sidedness in the brain of a chordate sibling. Elife 5Google Scholar
  17. 17.
    Nicol D, Meinertzhagen IA (1991) Cell counts and maps in the larval central nervous system of the ascidian Ciona intestinalis (L.). J Comp Neurol 309:415–429CrossRefGoogle Scholar
  18. 18.
    Tsuda M, Sakurai D, Goda M (2003) Direct evidence for the role of pigment cells in the brain of ascidian larvae by laser ablation. J Exp Biol 206:1409–1417CrossRefGoogle Scholar
  19. 19.
    Eakin RM, Kuda A (1971) Ultrastructure of sensory receptors in Ascidian tadpoles. Z Zellforsch 112:287–312CrossRefGoogle Scholar
  20. 20.
    Oonuma K, Tanaka M, Nishitsuji K et al (2016) Revised lineage of larval photoreceptor cells in Ciona reveals archetypal collaboration between neural tube and neural crest in sensory organ formation. Dev Biol 420:178–185CrossRefGoogle Scholar
  21. 21.
    Yoshida K, Saiga H (2011) Repression of Rx gene on the left side of the sensory vesicle by Nodal signaling is crucial for right-sided formation of the ocellus photoreceptor in the development of Ciona intestinalis. Dev Biol 354:144–150CrossRefGoogle Scholar
  22. 22.
    Veeman MT, Newman-Smith E, El-Nachef D et al (2010) The ascidian mouth opening is derived from the anterior neuropore: reassessing the mouth/neural tube relationship in chordate evolution. Dev Biol 344:138–149CrossRefGoogle Scholar
  23. 23.
    Wada S, Katsuyama Y, Yasugi S et al (1995) Spatially and temporally regulated expression of the LIM class homeobox gene Hrlim suggests multiple distinct functions in development of the ascidian, Halocynthia roretzi. Mech Dev 51:115–126CrossRefGoogle Scholar
  24. 24.
    Nicol D, Meinertzhagen IA (1988) Development of the central nervous system of the larva of the ascidian, Ciona intestinalis L. I. The early lineages of the neural plate. Dev Biol 130:721–736CrossRefGoogle Scholar
  25. 25.
    Nicol D, Meinertzhagen IA (1988) Development of the central nervous system of the larva of the ascidian, Ciona intestinalis L. II. Neural plate morphogenesis and cell lineages during neurulation. Dev Biol 130:737–766CrossRefGoogle Scholar
  26. 26.
    Haupaix N, Abitua PB, Sirour C et al (2014) Ephrin-mediated restriction of ERK1/2 activity delimits the number of pigment cells in the Ciona CNS. Dev Biol 394:170–180CrossRefGoogle Scholar
  27. 27.
    Navarrete IA, Levine M (2016) Nodal and FGF coordinate ascidian neural tube morphogenesis. Development 143:4665–4675CrossRefGoogle Scholar
  28. 28.
    Ikuta T, Saiga H (2007) Dynamic change in the expression of developmental genes in the ascidian central nervous system: revisit to the tripartite model and the origin of the midbrain-hindbrain boundary region. Dev Biol 312:631–643CrossRefGoogle Scholar
  29. 29.
    Imai KS, Stolfi A, Levine M et al (2009) Gene regulatory networks underlying the compartmentalization of the Ciona central nervous system. Development 136:285–293CrossRefGoogle Scholar
  30. 30.
    Abitua PB, Wagner E, Navarrete IA et al (2012) Identification of a rudimentary neural crest in a non-vertebrate chordate. Nature 492:104–107CrossRefGoogle Scholar
  31. 31.
    Stolfi A, Levine M (2011) Neuronal subtype specification in the spinal cord of a protovertebrate. Development 138:995–1004CrossRefGoogle Scholar
  32. 32.
    Hotta K, Mitsuhara K, Takahashi H et al (2007) A web-based interactive developmental table for the ascidian Ciona intestinalis, including 3D real-image embryo reconstructions: I. From fertilized egg to hatching larva. Dev Dyn 236:1790–1805CrossRefGoogle Scholar
  33. 33.
    Jing L (2012) Preparation of Torula yeast RNA for Hybe solutions. BIO-Protoc 2Google Scholar
  34. 34.
    Lauter G, Söll I, Hauptmann G (2011) Two-color fluorescent in situ hybridization in the embryonic zebrafish brain using differential detection systems. BMC Dev Biol 11:43CrossRefGoogle Scholar
  35. 35.
    Thisse B, Thisse C (2014) In situ hybridization on whole-mount zebrafish embryos and young larvae. In: Nielsen BS (ed) In situ hybridization protocols. Springer New York, New York, NY, pp 53–67CrossRefGoogle Scholar
  36. 36.
    Shimeld SM, Levin M (2006) Evidence for the regulation of left-right asymmetry in Ciona intestinalis by ion flux. Dev Dyn 235:1543–1553CrossRefGoogle Scholar
  37. 37.
    Conklin EG (1905) The organisation and cell lineage of the ascidian egg. Science 23:340–344Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV)Sorbonne Université, CNRSVillefranche-sur-merFrance

Personalised recommendations