Immunolocalization of Neurotransmitters and Neuromodulators in the Developing Crayfish Brain

  • Steffen HarzschEmail author
  • Caroline Viertel
Part of the Methods in Molecular Biology book series (MIMB, volume 2047)


In the field of neurosciences, the crayfish nervous system is an important model for understanding how arthropods process sensory stimuli and generate specific behaviors. Furthermore, crayfish embryos have been important study objects for well over 200 years. Immunohistochemistry against neurotransmitters, neuromodulators, and neurohormones is widely used to analyze the ontogeny of neurons in the emerging brain of several crustacean species and to date represents one of the most powerful approaches to analyze aspects of brain development in this group of organisms. In recent years, the analysis of brain development in crustaceans has gained new momentum by the establishment of the Marmorkrebs Procambarus virginalis (Marbled Crayfish), a parthenogenetic crayfish, as new model system. The embryonic development of marbled crayfish is well characterized and these animals can be easily cultivated in the lab. This chapter describes protocols for immunolocalization of neuroactive substances in the developing crayfish brain.


Immunostaining Fluorescent labeling Brain Neurotransmitter Crayfish Crustacean Larva 



We wish to thank Franziska Spitzner and Rebecca Meth for providing the single images of Fig. 5.


  1. 1.
    Holdich DM (2002) Biology of freshwater crayfish, 1st edn. Blackwell Science, OxfordGoogle Scholar
  2. 2.
    Derby CD, Thiel M (2014) The natural history of crustacea. Vol. 3: nervous systems and their control of behaviour. Oxford University Press, OxfordGoogle Scholar
  3. 3.
    Sandeman D, Kenning M, Harzsch S (2014) Adaptive trends in malacostracan brain form and function related to behaviour. In: Derby CD, Thiel M (eds) The natural history of crustacea. Vol. 3: nervous systems and their control of behaviour. Oxford University Press, Oxford, pp 11–48Google Scholar
  4. 4.
    Schmidt M (2016) Malacostraca. In: Schmidt-Rhaesa A, Harzsch S, Purschke G (eds) Structure and evolution of invertebrate nervous systems. Oxford University Press, Oxford, pp 529–582Google Scholar
  5. 5.
    Harzsch S, Krieger J (2018) Crustacean olfactory systems: a comparative review and a crustacean perspective on insect olfactory systems. Prog Neurobiol 161:23–60PubMedCrossRefGoogle Scholar
  6. 6.
    Rathke H (1829) Über die Bildung und Entwicklung des Flusskrebses. Verlag Leopold Voss, LeipzigCrossRefGoogle Scholar
  7. 7.
    Reichenbach H (1888) Zur Embryonalen-twicklung des Flußkrebses. Abh Senckenb Naturforsch Ges 14:1–137Google Scholar
  8. 8.
    Zehnder H (1934) Über Die Embryonalent-wicklung Des Flusskrebses. Teil 1: Die ersten Stadien der Embryonalentwicklung von Astacus fluviatilis (Rond.) L. und Astacus torrentium (Schrank) vom unbefruchteten Ei bis zur Gastrulation. Acta Zool 15:261–344Google Scholar
  9. 9.
    Zehnder H (1934) Über Die Embryonalentwicklung Des Flusskrebses. Teil 2: Die Ausbildung der äußeren Körperform von Astacus fluviatilis (Rond.) L. und Astacus torrentium (Schrank) von der Gastrulation bis zum entwickelten Tier. Acta Zool 15:346–408CrossRefGoogle Scholar
  10. 10.
    Scholtz G (2014) Astacus fluviatilis Wachsmodellserie zur Entwicklung des Flusskrebses. Zoologische Schriften der HU, BerlinGoogle Scholar
  11. 11.
    Harzsch S, Krieger J, Faulkes Z (2015) “Crustacea”: Decapoda—Astacida. In: Wanninger A (ed) Evolutionary developmental biology of invertebrates 4: ecdysozoa II: crustacea. Springer Verlag, Wien, pp 101–152Google Scholar
  12. 12.
    Scholtz G, Wolff C (2013) Arthropod embryology: cleavage and germ band development. In: Minelli A, Boxshall G, Fusco G (eds) Arthropod biology and evolution. Springer, Berlin, pp 63–89CrossRefGoogle Scholar
  13. 13.
    Hartenstein V, Chipman AD (2015) Hexapoda: a Drosophila’s view of development. In: Wanninger A (ed) Evolutionary developmental biology of invertebrates 5: Ecdysozoa III: Hexapoda. Springer Verlag, Wien, pp 1–92Google Scholar
  14. 14.
    Seitz R, Vilpoux K, Hopp U, Harzsch S, Maier G (2005) Ontogeny of the Marmorkrebs (marbled crayfish): a parthenogenetic crayfish with unknown origin and phylogenetic position. J Exp Zool 303A:393–405CrossRefGoogle Scholar
  15. 15.
    Fabritius-Vilpoux K, Bisch-Knaden S, Harzsch S (2008) Engrailed-like immunoreactivity in the embryonic ventral nerve cord of the Marbled Crayfish (Marmorkrebs). Invertebr Neurosci 8:177–197CrossRefGoogle Scholar
  16. 16.
    Rieger V, Harzsch S (2008) Embryonic development of the histaminergic system in the ventral nerve cord of the Marbled Crayfish (Marmorkrebs). Tissue Cell 40:113–126CrossRefPubMedGoogle Scholar
  17. 17.
    Dohle W, Gerberding M, Hejnol A, Scholtz G (2004) Cell lineage, segment differentiation, and gene expression in crustaceans. In: Scholtz G (ed) Evolutionary developmental biology of crustacea. AA Balkema, Lisse, pp 95–134Google Scholar
  18. 18.
    Gerberding M, Patel NH, Stern CD (2004) Gastrulation in crustaceans: germ layers and cell lineages. In: Stern C (ed) Gastrulation: from cells to embryo. CSHL Press, New York, pp 79–89Google Scholar
  19. 19.
    Wolff C, Gerberding M (2015) “Crustacea”: comparative aspects of early development. In: Wanninger A (ed) Evolutionary developmental biology of invertebrates 4: ecdysozoa II: crustacea. Springer Verlag, Wien, pp 39–62Google Scholar
  20. 20.
    Sandeman RE, Sandeman DC (1991) Stages in the development of the embryo of the fresh-water crayfish Cherax destructor. Rouxs Arch Dev Biol 200:27–37PubMedCrossRefGoogle Scholar
  21. 21.
    Alwes F, Scholtz G (2006) Stages and other aspects of the embryology of the parthenogenetic Marmorkrebs (Decapoda, Reptantia, Astacida). Dev Genes Evol 216:169–184PubMedCrossRefGoogle Scholar
  22. 22.
    Scholtz G (1992) Cell lineage studies in the crayfish Cherax destructor (Crustacea, Decapoda): germ band formation, segmentation, and early neurogenesis. Rouxs Arch Dev Biol 202:36–48PubMedCrossRefGoogle Scholar
  23. 23.
    Scholtz G (2000) Evolution of the nauplius stage in malacostracan crustaceans. J Zool Syst Evol Res 38:175–187CrossRefGoogle Scholar
  24. 24.
    Jirikowski GJ, Richter S, Wolff C (2013) Myogenesis of Malacostraca—the “egg-nauplius” concept revisited. Front Zool 10:76PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Sintoni S, Fabritius-Vilpoux K, Harzsch S (2007) The Engrailed-expressing secondary head spots in the embryonic crayfish brain: examples for a group of homologous neurons in Crustacea and Hexapoda? Dev Genes Evol 217:791–799PubMedCrossRefGoogle Scholar
  26. 26.
    Scholtz G, Gerberding M (2002) Cell lineage of crustacean neuroblasts. In: Wiese K (ed) The crustacean nervous system. Springer, Heidelberg, pp 404–416Google Scholar
  27. 27.
    Sandeman RE, Sandeman DC (2003) Development, growth, and plasticity in the crayfish olfactory system. Microsc Res Tech 60:266–277PubMedCrossRefGoogle Scholar
  28. 28.
    Harzsch S, Hafner GS (2006) Evolution of eye development in arthropods: Phylogenetic aspects. Arthropod Struct Dev 35:319–340PubMedCrossRefGoogle Scholar
  29. 29.
    Whitington FR (2004) The development of the crustacean nervous system. In: Scholtz G (ed) Evolutionary developmental biology of crustacea. AA Balkema, Wien, pp 135–167Google Scholar
  30. 30.
    Jirikowski GJ, Vogt G, Charmantier-Daures M, Charmantier G, Harzsch S (in press) Chapter 3: organogenesis. In: Anger K, Harzsch S, Thiel M (eds) The natural history of the crustacea, volume 7: developmental biology and larval ecology. Oxford University Press, OxfordGoogle Scholar
  31. 31.
    Benton JL, Beltz BS (2002) Patterns of neurogenesis in the midbrain of embryonic lobsters differ from proliferation in the insect and the crustacean ventral nerve cord. J Neurobiol 53:57–67PubMedCrossRefGoogle Scholar
  32. 32.
    Vilpoux K, Sandeman R, Harzsch S (2006) Early embryonic development of the central nervous system in the Australian crayfish and the Marbled crayfish (Marmorkrebs). Dev Genes Evol 216:209–223PubMedCrossRefGoogle Scholar
  33. 33.
    Sintoni S, Benton JL, Beltz BS, Hansson BS, Harzsch S (2012) Neurogenesis in the central olfactory pathway of adult decapod crustaceans: development of the neurogenic niche in the brains of procambarid crayfish. Neural Dev 7:1–26PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Charmantier G, Charmantier-Daures M (1998) Endocrine and neuroendocrine regulations in embryos and larvae of crustaceans. Invertebr Reprod Dev 33:273–287CrossRefGoogle Scholar
  35. 35.
    Beltz BS, Pontes M, Helluy SM, Kravitz EA (1990) Patterns of appearance of serotonin and proctolin immunoreactivities in the developing nervous system of the American lobster. Dev Neurobiol 21:521–542CrossRefGoogle Scholar
  36. 36.
    Beltz BS, Helluy SM, Ruchhoeft ML, Gammill LS (1992) Aspects of the embryology and neural development of the American lobster. J Exp Zool A Ecol Genet Physiol 261:288–297Google Scholar
  37. 37.
    Helluy S, Sandeman R, Beltz B, Sandeman D (1993) Comparative brain ontogeny of the crayfish and clawed lobster: implications of direct and larval development. J Comp Neurol 335:343–345PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Beltz BS (1999) Distribution and functional anatomy of amine-containing neurons in decapod crustaceans. Microsc Res Tech 44:105–120CrossRefPubMedGoogle Scholar
  39. 39.
    Harzsch S, Dircksen H, Beltz BS (2009) Development of pigment-dispersing hormone-immunoreactive neurons in the American lobster: homology to the insect circadian pacemaker system? Cell Tissue Res 335:417–429PubMedCrossRefGoogle Scholar
  40. 40.
    Sandeman R, Sandeman D (1990) Development and identified neural systems in the crayfish brain. In: Wiese K, Krenz WD, Tautz J, Reichert H, Mulloney B (eds) Frontiers in crustacean neurobiology. Advances in life sciences. Birkhäuser, Basel, pp 498–508CrossRefGoogle Scholar
  41. 41.
    Zieger E, Bräunig P, Harzsch S (2013) A developmental study of serotonin-immunoreactive neurons in the embryonic brain of the Marbled Crayfish and the Migratory Locust: evidence for a homologous protocerebral group of neurons. Arthropod Struct Dev 42:507–520PubMedCrossRefGoogle Scholar
  42. 42.
    Benton JL, Sandeman DC, Beltz BS (2007) Nitric oxide in the crustacean brain: regulation of neurogenesis and morphogenesis in the developing olfactory pathway. Dev Dyn 236:3047–3060PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Helluy SM, Ruchhoeft ML, Beltz BS (1995) Development of the olfactory and accessory lobes in the American lobster: an allometric analysis and its implications for the deutocerebral structure of decapods. J Comp Neurol 357:433–445PubMedCrossRefGoogle Scholar
  44. 44.
    Helluy SM, Benton JL, Langworthy KA, Ruchhoeft ML, Beltz BS (1996) Glomerular organization in developing olfactory and accessory lobes of American lobsters: stabilization of numbers and increase in size after metamorphosis. J Neurobiol 29:459–472PubMedCrossRefGoogle Scholar
  45. 45.
    Mellon D, Alones V (1993) Cellular organization and growth-related plasticity of the crayfish olfactory midbrain. Microsc Res Tech 24:231–259PubMedCrossRefGoogle Scholar
  46. 46.
    Sandeman RE, Sandeman DC (1996) Pre- and postembryonic development, growth and turnover of olfactory receptor neurones in crayfish antennules. J Exp Biol 199:2409–2418PubMedGoogle Scholar
  47. 47.
    Harzsch S, Dawirs RR (1995) A developmental study of serotonin-immunoreactive neurons in the larval central nervous system of the spider crab Hyas araneus (Decapoda, Brachyura). Invertebr Neurosci 1:53–65CrossRefGoogle Scholar
  48. 48.
    Harzsch S, Dawirs RR (1996) Neurogenesis in developing crab brain: postembryonic generation of neurons persists beyond metamorphosis. J Neurobiol 29:384–398PubMedCrossRefGoogle Scholar
  49. 49.
    Harzsch S, Miller J, Benton JL, Beltz BS (1999) From embryo to adult: persistent neurogenesis and apoptotic cell death shape the lobster deutocerebrum. J Neurosci 19:3472–3485PubMedCrossRefGoogle Scholar
  50. 50.
    Sullivan JM, Beltz BS (2005) Adult neurogenesis in the central olfactory pathway in the absence of receptor neuron turnover in Libinia emarginata. Eur J Neurosci 22:2397–2402PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Sullivan JM, Benton JL, Sandeman DC, Beltz BS (2007) Adult neurogenesis: a common strategy across diverse species. J Comp Neurol 500:574–584PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Sullivan JM, Sandeman DC, Benton JL, Beltz BS (2007) Adult neurogenesis and cell cycle regulation in the crustacean olfactory pathway: from glial precursors to differentiated neurons. J Mol Histol 38:527–542PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Vogt G (2008) The marbled crayfish: a new model organism for research on development, epigenetics and evolutionary biology. J Zool 276:1–13CrossRefGoogle Scholar
  54. 54.
    Vogt G (2011) Marmorkrebs: natural crayfish clone as emerging model for various biological disciplines. J Biosci 36:377–382PubMedCrossRefGoogle Scholar
  55. 55.
    Vogt G (2018) Annotated bibliography of the parthenogenetic marbled crayfish Procambarus virginalis, a new research model, potent invader and popular pet. Zootaxa 4418(4):301–352PubMedCrossRefGoogle Scholar
  56. 56.
    Lyko F (2017) The marbled crayfish (Decapoda: Cambaridae) represents an independent new species. Zootaxa 4363:544–552PubMedCrossRefGoogle Scholar
  57. 57.
    Gutekunst J, Andriantsoa R, Falckenhayn C, Hanna K, Stein W, Rasamy J, Lyko F (2018) Clonal genome evolution and rapid invasive spread of the marbled crayfish. Nat Ecol Evol 2(3):567–573. Scholar
  58. 58.
    Vogt G (2008) Investigation of hatching and early post-embryonic life of freshwater crayfish by in vitro culture, behavioural analysis, and light and electron microscopy. J Morphol 269:790–811PubMedCrossRefGoogle Scholar
  59. 59.
    Vogt G, Tolley L, Scholtz G (2004) Life stages and reproductive components of the Marmorkrebs (marbled crayfish), the first parthenogenetic decapod crustacean. J Morphol 261:286–311PubMedCrossRefGoogle Scholar
  60. 60.
    Beltz BS, Burd GD (1989) Immunocytochemical techniques: principles and practice. Oxford, Blackwell Scientific PublicationsGoogle Scholar
  61. 61.
    Kalyuzhny AE (2016) Immunohistochemistry—essential elements and beyond. Springer, ChamGoogle Scholar
  62. 62.
    Ekerholm M, Hallberg E (2002) Development and growth patterns of olfactory sensilla in malacostracan crustaceans. In: Wiese K (ed) The crustacean nervous system. Springer, Berlin, pp 376–385CrossRefGoogle Scholar
  63. 63.
    Hafner GS, Tokarski TR, Hammond-Soltis G (1982) Development of the crayfish retina: a light and electron microscopic study. J Morphol 173:101–118PubMedCrossRefGoogle Scholar
  64. 64.
    Rotllant G, Charmantier-Daures M, Trilles JP, Charmantier G (1993) Ontogeny of the sinus gland and of the organ of Bellonci in larvae and postlarvae of the European lobster Homarus gammarus. Invertebr Reprod Dev 26:13–22CrossRefGoogle Scholar
  65. 65.
    Rotllant G, Charmantier-Daures M, De Kleijn D, Charmantier G, Van Herp F (1993) Ontogeny of neuroendocrine centres in the eyestalk of Homarus gammarus embryos: an anatomical and hormonal approach. Invertebr Reprod Dev 27:233–245CrossRefGoogle Scholar
  66. 66.
    Harzsch S, Dawirs RR (1996) Maturation of the compound eyes and eyestalk ganglia during larval development of the brachyuran crustaceans Hyas araneus L. (Decapoda, Majidae) and Carcinus maenas L. (Decapoda, Portunidae). Zoology 99:189–204Google Scholar
  67. 67.
    Hafner GS, Tokarski TR (1998) Morphogenesis and pattern formation in the retina of the crayfish Procambarus clarkii. Cell Tissue Res 293:535–550PubMedCrossRefGoogle Scholar
  68. 68.
    Hafner GS, Tokarski TR (2001) Retinal development in the lobster Homarus americanus. Cell Tissue Res 305:147–158PubMedCrossRefGoogle Scholar
  69. 69.
    Harzsch S, Dawirs RR (1993) On the morphology of the central nervous system in larval stages of Carcinus maenas L. (Decapoda, Brachyura). Helgoländer Meeresunters 47:61–79CrossRefGoogle Scholar
  70. 70.
    Harzsch S, Dawirs RR (1994) Neurogenesis in larval stages of the spider crab Hyas araneus (Decapoda, Brachyura): proliferation of neuroblasts in the ventral nerve cord. Roux Arch Dev Biol 204:93–100PubMedCrossRefGoogle Scholar
  71. 71.
    Harzsch S, Miller J, Benton J, Dawirs RR, Beltz B (1998) Neurogenesis in the thoracic neuromeres of two crustaceans with different types of metamorphic development. J Exp Biol 201:2465–2479PubMedGoogle Scholar
  72. 72.
    Sullivan JM, Macmillan DL (2001) Embryonic and postembryonic neurogenesis in the ventral nerve cord of the freshwater crayfish Cherax destructor. J Exp Zool A Ecol Genet Physiol 290:49–60Google Scholar
  73. 73.
    Geiselbrecht H, Melzer RR (2013) Nervous systems in 3D: a comparison of Caridean, anomuran, and brachyuran zoea-I (DECAPODA). J Exp Zool B Mol Dev Evol 320:511–524PubMedCrossRefGoogle Scholar
  74. 74.
    Castejón D, Alba-Tercedor J, Rotllant G, Ribes E, Durfort M, Guerao G (2018) Micro-computed tomography and histology to explore internal morphology in decapod larvae. Sci Rep 8:14399PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Spitzner F, Meth R, Krüger C, Nischik ES, Eiler S, Sombke A, Torres G, Harzsch S (2018) An atlas of larval organogenesis in the European shore crab Carcinus maenas L. (Decapoda, Brachyura, Portunidae). Front Zool 15:27PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Whitington PM, Leach D, Sandeman RE (1993) Evolutionary change in neural development within the arthropods: axonogenesis in the embryos of two crustaceans. Development 118:449–461PubMedGoogle Scholar
  77. 77.
    Gerberding M, Scholtz G (1999) Cell lineage of the midline cells in the amphipod crustacean Orchestia cavimana (Crustacea, Malacostraca) during formation and separation of the germ band. Dev Gene Evol 209:91–102CrossRefGoogle Scholar
  78. 78.
    Gerberding M, Scholtz G (2001) Neurons and glia in the midline of the higher crustacean Orchestia cavimana are generated via an invariant cell lineage that comprises a median neuroblast and glial progenitors. Dev Biol 235:397–409PubMedCrossRefGoogle Scholar
  79. 79.
    Ungerer P, Scholtz G (2008) Filling the gap between identified neuroblasts and neurons in crustaceans adds new support for Tetraconata. Proc R Soc B 275:369–376PubMedCrossRefGoogle Scholar
  80. 80.
    Harzsch S, Benton J, Dawirs RR, Beltz BS (1999) A new look at embryonic development of the visual system in decapod crustaceans: neuropil formation, neurogenesis, and apoptotic cell death. J Neurobiol 39:294–306PubMedCrossRefGoogle Scholar
  81. 81.
    Harzsch S (2001) Neurogenesis in the crustacean ventral nerve cord: homology of neuronal stem cells in Malacostraca and Branchiopoda? Evol Dev 3:154–169PubMedCrossRefGoogle Scholar
  82. 82.
    Harzsch S, Anger K, Dawirs RR (1997) Immunocytochemical detection of acetylated alpha-tubulin and Drosophila synapsin in the embryonic crustacean nervous system. Int J Dev Biol 41:477–484PubMedGoogle Scholar
  83. 83.
    Fischer AH, Scholtz G (2010) Axogenesis in the stomatopod crustacean Gonodactylaceus falcatus (Malacostraca). Invertebr Biol 129:59–76CrossRefGoogle Scholar
  84. 84.
    Ungerer P, Geppert M, Wolff C (2011) Axogenesis in the central and peripheral nervous system of the amphipod crustacean Orchestia cavimana. Integr Zool 6:28–44PubMedCrossRefGoogle Scholar
  85. 85.
    Garzino V, Reichert H (1994) Early embryonic expression of a 60-kD glycoprotein in the developing nervous system of the lobster. J Comp Neurol 346:572–582PubMedCrossRefGoogle Scholar
  86. 86.
    Webster SG, Dircksen H (1991) Putative molt-inhibiting hormone in larvae of the shore crab Carcinus maenas L.: an immunocytochemical approach. Biol Bull 180:65–71PubMedCrossRefGoogle Scholar
  87. 87.
    Chung JS, Webster SG (2004) Expression and release patterns of neuropeptides during embryonic development and hatching of the green shore crab, Carcinus maenas. Development 131:4751–4761PubMedCrossRefGoogle Scholar
  88. 88.
    Harzsch S, Dawirs RR (1996) Development of neurons exhibiting FMRFamide-related immunoreactivity in the central nervous system of larvae of the spider crab Hyas araneus L.(Decapoda: Majidae). J Crustacean Biol 16:10–19CrossRefGoogle Scholar
  89. 89.
    Harzsch S (2003) Evolution of identified arthropod neurons: the serotonergic system in relation to engrailed-expressing cells in the embryonic ventral nerve cord of the American lobster Homarus americanus Milne Edwards, 1873 (Malacostraca, Pleocyemata, Homarida). Dev Biol 258:44–56PubMedCrossRefGoogle Scholar
  90. 90.
    Cournil I, Casasnovas B, Helluy SM, Beltz BS (1995) Dopamine in the lobster Homarus gammarus: II. Dopamine-immunoreactive neurons and development of the nervous system. J Comp Neurol 362:1–16PubMedCrossRefGoogle Scholar
  91. 91.
    Schneider H, Budhiraja P, Walter I, Beltz BS, Peckol E, Kravitz EA (1996) Developmental expression of the octopamine phenotype in lobsters, Homarus americanus. J Comp Neurol 371:3–14PubMedCrossRefGoogle Scholar
  92. 92.
    Scholz NL, Chang ES, Graubard K, Truman JW (1998) The NO/cGMP pathway and the development of neural networks in postembryonic lobsters. J Neurobiol 34:208–226PubMedCrossRefGoogle Scholar
  93. 93.
    Pulver SR, Marder E (2002) Neuromodulatory complement of the pericardial organs in the embryonic lobster, Homarus americanus. J Comp Neurol 451:79–90PubMedCrossRefGoogle Scholar
  94. 94.
    Rotllant G, Kleijn DD, Charmantier-Daures M, Charmantier G, Herp FV (1995) Localization of crustacean hyperglycemic hormone (CHH) and gonad-inhibiting hormone (GIH) in the eyestalk of Homarus gammarus larvae by immunocytochemistry and in situ hybridization. Cell Tissue Res 271:507–512CrossRefGoogle Scholar
  95. 95.
    Gorgels-Kallen JL, Meij JT (1985) Immunocytochemical study of the hyperglycemic hormone (CHH)-producing system in the eyestalk of the crayfish Astacus leptodactylus during larval and postlarval development. J Morphol 183:155–163PubMedCrossRefGoogle Scholar
  96. 96.
    Foa LC, Cooke IR (1998) The ontogeny of GABA-and glutamate-like immunoreactivity in the embryonic Australian freshwater crayfish, Cherax destructor. Dev Brain Res 107:33–42CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Cytology and Evolutionary Biology, Zoological Institute and MuseumUniversity of GreifswaldGreifswaldGermany

Personalised recommendations