Skip to main content

Structural Modeling of Lymphocyte Receptors and Their Antigens

  • Protocol
  • First Online:
In Vitro Differentiation of T-Cells

Abstract

Structural modeling plays a key role in protein function prediction on a genome-wide scale. For B and T lymphocyte receptors, the critical functional question is: which antigens and epitopes are targeted? With emerging B cell receptor (BCR) and T cell receptor (TCR) sequencing methods improving in both breadth and depth, there is a growing need for methods that can help answer this question. Since lymphocyte-antigen recognition depends on complementarity, structural modeling is likely to play an important role in understanding antigen specificity and affinity. In the case of BCRs, such modeling methods have a long history in the study and design of antibodies. However, for TCRs there are relatively few publicly available modeling tools, and, to our knowledge, none that incorporate interaction between TCRs and peptide-MHC (pMHC) complexes. Here, we provide a web-based tool, ImmuneScape (https://sysimm.org/immune-scape/), to carry out TCR-pMHC modeling as a first step toward structure-based function prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almagro JC, Teplyakov A, Luo J, Sweet RW, Kodangattil S, Hernandez-Guzman F, Gilliland GL (2014) Second antibody modeling assessment (AMA-II). Proteins 82(8):1553–1562. https://doi.org/10.1002/prot.24567

    Article  CAS  PubMed  Google Scholar 

  2. Berman H, Henrick K, Nakamura H (2003) Announcing the worldwide protein data bank. Nat Struct Biol 10(12):980. https://doi.org/10.1038/nsb1203-980

    Article  CAS  Google Scholar 

  3. Larsen MV, Lundegaard C, Lamberth K, Buus S, Lund O, Nielsen M (2007) Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics 8:424. https://doi.org/10.1186/1471-2105-8-424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Roomp K, Antes I, Lengauer T (2010) Predicting MHC class I epitopes in large datasets. BMC Bioinformatics 11:90. https://doi.org/10.1186/1471-2105-11-90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang P, Sidney J, Dow C, Mothe B, Sette A, Peters B (2008) A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput Biol 4(4):e1000048. https://doi.org/10.1371/journal.pcbi.1000048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rosati E, Dowds CM, Liaskou E, Henriksen EKK, Karlsen TH, Franke A (2017) Overview of methodologies for T-cell receptor repertoire analysis. BMC Biotechnol 17(1):61. https://doi.org/10.1186/s12896-017-0379-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Altman JD, Moss PA, Goulder PJ, Barouch DH, McHeyzer-Williams MG, Bell JI, McMichael AJ, Davis MM (1996) Phenotypic analysis of antigen-specific T lymphocytes. Science 274(5284):94–96

    Article  CAS  Google Scholar 

  8. Maryanski JL, Jongeneel CV, Bucher P, Casanova JL, Walker PR (1996) Single-cell PCR analysis of TCR repertoires selected by antigen in vivo: a high magnitude CD8 response is comprised of very few clones. Immunity 4(1):47–55

    Article  CAS  Google Scholar 

  9. Shugay M, Bagaev DV, Zvyagin IV, Vroomans RM, Crawford JC, Dolton G, Komech EA, Sycheva AL, Koneva AE, Egorov ES, Eliseev AV, Van Dyk E, Dash P, Attaf M, Rius C, Ladell K, McLaren JE, Matthews KK, Clemens EB, Douek DC, Luciani F, van Baarle D, Kedzierska K, Kesmir C, Thomas PG, Price DA, Sewell AK, Chudakov DM (2018) VDJdb: a curated database of T-cell receptor sequences with known antigen specificity. Nucleic Acids Res 46(D1):D419–D427. https://doi.org/10.1093/nar/gkx760

    Article  CAS  PubMed  Google Scholar 

  10. Liang S, Liu S, Zhang C, Zhou Y (2007) A simple reference state makes a significant improvement in near-native selections from structurally refined docking decoys. Proteins 69(2):244–253. https://doi.org/10.1002/prot.21498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lepore R, Olimpieri PP, Messih MA, Tramontano A (2017) PIGSPro: prediction of immunoGlobulin structures v2. Nucleic Acids Res 45(W1):W17–W23. https://doi.org/10.1093/nar/gkx334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Weitzner BD, Jeliazkov JR, Lyskov S, Marze N, Kuroda D, Frick R, Adolf-Bryfogle J, Biswas N, Dunbrack RL Jr, Gray JJ (2017) Modeling and docking of antibody structures with Rosetta. Nat Protoc 12(2):401–416. https://doi.org/10.1038/nprot.2016.180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Klausen MS, Anderson MV, Jespersen MC, Nielsen M, Marcatili P (2015) LYRA, a webserver for lymphocyte receptor structural modeling. Nucleic Acids Res 43(W1):W349–W355. https://doi.org/10.1093/nar/gkv535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yamashita K, Ikeda K, Amada K, Liang S, Tsuchiya Y, Nakamura H, Shirai H, Standley DM (2014) Kotai antibody builder: automated high-resolution structural modeling of antibodies. Bioinformatics 30(22):3279–3280. https://doi.org/10.1093/bioinformatics/btu510

    Article  CAS  PubMed  Google Scholar 

  15. Leem J, Dunbar J, Georges G, Shi J, Deane CM (2016) ABodyBuilder: automated antibody structure prediction with data-driven accuracy estimation. MAbs 8(7):1259–1268. https://doi.org/10.1080/19420862.2016.1205773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schritt D, Li S, Rozewicki J, Katoh K, Yamashita K, Volkmuth W, Cavetc G, Standley DM (2019) Repertoire builder: high-throughput structural modeling of B and T cell receptors. Mol Syst Des Eng. https://doi.org/10.1039/C9ME00020H

    Article  CAS  Google Scholar 

  17. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780. https://doi.org/10.1093/molbev/mst010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hoof I, Peters B, Sidney J, Pedersen LE, Sette A, Lund O, Buus S, Nielsen M (2009) NetMHCpan, a method for MHC class I binding prediction beyond humans. Immunogenetics 61(1):1–13. https://doi.org/10.1007/s00251-008-0341-z

    Article  CAS  PubMed  Google Scholar 

  19. Jensen KK, Andreatta M, Marcatili P, Buus S, Greenbaum JA, Yan Z, Sette A, Peters B, Nielsen M (2018) Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology. https://doi.org/10.1111/imm.12889

    Article  CAS  Google Scholar 

  20. Jurtz V, Paul S, Andreatta M, Marcatili P, Peters B, Nielsen M (2017) NetMHCpan-4.0: improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J Immunol 199(9):3360–3368. https://doi.org/10.4049/jimmunol.1700893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nielsen M, Andreatta M (2016) NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets. Genome Med 8(1):33. https://doi.org/10.1186/s13073-016-0288-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Alexandrov N, Shindyalov I (2003) PDP: protein domain parser. Bioinformatics 19(3):429–430

    Article  CAS  Google Scholar 

  23. Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28(23):3150–3152. https://doi.org/10.1093/bioinformatics/bts565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, Beglov D, Vajda S (2017) The ClusPro web server for protein-protein docking. Nat Protoc 12(2):255–278. https://doi.org/10.1038/nprot.2016.169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Krivov GG, Shapovalov MV, Dunbrack RL Jr (2009) Improved prediction of protein side-chain conformations with SCWRL4. Proteins 77(4):778–795. https://doi.org/10.1002/prot.22488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schmid N, Eichenberger AP, Choutko A, Riniker S, Winger M, Mark AE, van Gunsteren WF (2011) Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J 40(7):843–856. https://doi.org/10.1007/s00249-011-0700-9

    Article  CAS  Google Scholar 

  27. Standley DM, Toh H, Nakamura H (2007) ASH structure alignment package: sensitivity and selectivity in domain classification. BMC Bioinformatics 8:116. https://doi.org/10.1186/1471-2105-8-116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rozewicki J, Li S, Amada KM, Standley DM, Katoh K (2019) MAFFT-DASH: integrated protein sequence and structural alignment. Nucleic Acids Res 47(W1):W5–W10. https://doi.org/10.1093/nar/gkz342

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daron M. Standley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, S. et al. (2019). Structural Modeling of Lymphocyte Receptors and Their Antigens. In: Kaneko, S. (eds) In Vitro Differentiation of T-Cells. Methods in Molecular Biology, vol 2048. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9728-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9728-2_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9727-5

  • Online ISBN: 978-1-4939-9728-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics