Skip to main content

In Vitro Differentiation of T Cells from Murine Pluripotent Stem Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2048))

Abstract

In recent years cancer immunotherapy, especially the cell-based immunotherapy, has reached several milestones and achieved a lot of cancer remission in the clinics. Obtaining a more potent and effective cytotoxic T lymphocytes (CTLs) for cancer immunotherapy is always the ultimate goal for the researchers. However, the difficulty in harvesting a large number of tumor antigen-specific CTLs from the tumor patient is still a major obstacle we need to overcome. In our previous studies, it is shown that pluripotent stem cell-derived CTL—especially the genetically engineered antigen-specific CTLs—may serve as a good source of unlimited number of highly reactive and antigen-specific CTLs. Here we present a two-step method for the generation of antigen-specific T lymphocytes from iPS cells by in vitro priming and in vivo maturation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Schuster SJ, Svoboda J, Chong EA, Nasta SD, Mato AR, Anak O, Brogdon JL, Pruteanu-Malinici I, Bhoj V, Landsburg D, Wasik M, Levine BL, Lacey SF, Melenhorst JJ, Porter DL, June CH (2017) Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med 377(26):2545–2554. https://doi.org/10.1056/NEJMoa1708566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hataye J, Moon JJ, Khoruts A, Reilly C, Jenkins MK (2006) Naive and memory CD4+ T cell survival controlled by clonal abundance. Science 312(5770):114–116. https://doi.org/10.1126/science.1124228

    Article  CAS  PubMed  Google Scholar 

  3. Seki Y, Yang J, Okamoto M, Tanaka S, Goitsuka R, Farrar MA, Kubo M (2007) IL-7/STAT5 cytokine signaling pathway is essential but insufficient for maintenance of naive CD4 T cell survival in peripheral lymphoid organs. J Immunol 178(1):262–270

    Article  CAS  Google Scholar 

  4. Stemberger C, Huster KM, Koffler M, Anderl F, Schiemann M, Wagner H, Busch DH (2007) A single naive CD8+ T cell precursor can develop into diverse effector and memory subsets. Immunity 27(6):985–997. https://doi.org/10.1016/j.immuni.2007.10.012

    Article  CAS  PubMed  Google Scholar 

  5. Siewert C, Lauer U, Cording S, Bopp T, Schmitt E, Hamann A, Huehn J (2008) Experience-driven development: effector/memory-like alphaE+Foxp3+ regulatory T cells originate from both naive T cells and naturally occurring naive-like regulatory T cells. J Immunol 180(1):146–155

    Article  CAS  Google Scholar 

  6. Hinrichs CS, Borman ZA, Gattinoni L, Yu Z, Burns WR, Huang J, Klebanoff CA, Johnson LA, Kerkar SP, Yang S, Muranski P, Palmer DC, Scott CD, Morgan RA, Robbins PF, Rosenberg SA, Restifo NP (2011) Human effector CD8+ T cells derived from naive rather than memory subsets possess superior traits for adoptive immunotherapy. Blood 117(3):808–814. https://doi.org/10.1182/blood-2010-05-286286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alajez NM, Schmielau J, Alter MD, Cascio M, Finn OJ (2005) Therapeutic potential of a tumor-specific, MHC-unrestricted T-cell receptor expressed on effector cells of the innate and the adaptive immune system through bone marrow transduction and immune reconstitution. Blood 105(12):4583–4589. https://doi.org/10.1182/blood-2004-10-3848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang L, Baltimore D (2005) Long-term in vivo provision of antigen-specific T cell immunity by programming hematopoietic stem cells. Proc Natl Acad Sci U S A 102(12):4518–4523. https://doi.org/10.1073/pnas.0500600102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao Y, Parkhurst MR, Zheng Z, Cohen CJ, Riley JP, Gattinoni L, Restifo NP, Rosenberg SA, Morgan RA (2007) Extrathymic generation of tumor-specific T cells from genetically engineered human hematopoietic stem cells via notch signaling. Cancer Res 67(6):2425–2429. https://doi.org/10.1158/0008-5472.CAN-06-3977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Boztug K, Schmidt M, Schwarzer A, Banerjee PP, Diez IA, Dewey RA, Bohm M, Nowrouzi A, Ball CR, Glimm H, Naundorf S, Kuhlcke K, Blasczyk R, Kondratenko I, Marodi L, Orange JS, von Kalle C, Klein C (2010) Stem-cell gene therapy for the Wiskott-Aldrich syndrome. N Engl J Med 363(20):1918–1927. https://doi.org/10.1056/NEJMoa1003548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma'ayan A, Enikolopov GN, Frenette PS (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466(7308):829–834. https://doi.org/10.1038/nature09262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Peerani R, Zandstra PW (2010) Enabling stem cell therapies through synthetic stem cell-niche engineering. J Clin Invest 120(1):60–70. https://doi.org/10.1172/JCI41158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boitano AE, Wang J, Romeo R, Bouchez LC, Parker AE, Sutton SE, Walker JR, Flaveny CA, Perdew GH, Denison MS, Schultz PG, Cooke MP (2010) Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science 329(5997):1345–1348. https://doi.org/10.1126/science.1191536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Himburg HA, Muramoto GG, Daher P, Meadows SK, Russell JL, Doan P, Chi JT, Salter AB, Lento WE, Reya T, Chao NJ, Chute JP (2010) Pleiotrophin regulates the expansion and regeneration of hematopoietic stem cells. Nat Med 16(4):475–482. https://doi.org/10.1038/nm.2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lei F, Zhao B, Haque R, Xiong X, Budgeon L, Christensen ND, Wu Y, Song J (2011) In vivo programming of tumor antigen-specific T lymphocytes from pluripotent stem cells to promote cancer immunosurveillance. Cancer Res 71(14):4742–4747. https://doi.org/10.1158/0008-5472.CAN-11-0359

    Article  CAS  PubMed  Google Scholar 

  16. Lei F, Haque M, Sandhu P, Ravi S, Song J, Ni B, Zheng S, Fang D, Jia H, Yang JM, Song J (2017) Development and characterization of naive single-type tumor antigen-specific CD8+ T lymphocytes from murine pluripotent stem cells. Oncoimmunology 6(7):e1334027. https://doi.org/10.1080/2162402X.2017.1334027

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lei F, Haque R, Weiler L, Vrana KE, Song J (2009) T lineage differentiation from induced pluripotent stem cells. Cell Immunol 260(1):1–5. https://doi.org/10.1016/j.cellimm.2009.09.005

    Article  CAS  PubMed  Google Scholar 

  18. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317. https://doi.org/10.1038/nature05934

    Article  CAS  PubMed  Google Scholar 

  19. Schmitt TM, Zuniga-Pflucker JC (2002) Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity 17(6):749–756

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded, in part, under the grants from National Institute of Health Grant R01AI121180, R21AI109239, and R01CA221867 and the American Diabetes Association (1-16-IBS-281) to J.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxun Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chen, X., Lei, F., Wang, L., Xiong, X., Song, J. (2019). In Vitro Differentiation of T Cells from Murine Pluripotent Stem Cells. In: Kaneko, S. (eds) In Vitro Differentiation of T-Cells. Methods in Molecular Biology, vol 2048. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9728-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9728-2_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9727-5

  • Online ISBN: 978-1-4939-9728-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics