Skip to main content

An Improved Method to Produce Clinical-Scale Natural Killer Cells from Human Pluripotent Stem Cells

  • Protocol
  • First Online:
In Vitro Differentiation of T-Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2048))

Abstract

Human natural killer (NK) cell-based adoptive anticancer immunotherapy has gained intense interest with many clinical trials actively recruiting patients to treat a variety of both hematological malignancies and solid tumors. Most of these trials use primary NK cells isolated either from peripheral blood (PB-NK cells) or umbilical cord blood (UCB-NK cells), though these sources require NK cell collection for each patient leading to donor variability and heterogeneity in the NK cell populations. In contrast, NK cells derived human embryonic stem cells (hESC-NK cells) or induced pluripotent stem cells (hiPSC-NK cells) provide more homogeneous cell populations that can be grown at clinical scale, and genetically engineered if needed. These characteristics make hESC-/iPSC-derived NK cells an ideal cell population for developing standardized, “off-the-shelf” immunotherapy products. Additionally, production of NK cells from undifferentiated human pluripotent stem cells enables studies to better define pathways that regulate human NK cell development and function. Our group previously has established a stromal-free, two-stage culture system to derive NK cells from hESC/hiPSC in vitro followed by clinical-scale expansion of these cells using interleukin (IL)-21 expressing artificial antigen-presenting cells. However, prior to differentiation, this method requires single-cell adaptation of hESCs/hiPSCs which takes months. Recently we optimized this method by adapting the mouse embryonic fibroblast-dependent hESC/hiPSC to feeder-free culture conditions. These feeder-free hESCs/hiPSCs are directly used to form embryoid body (EB) to generate hemato-endothelial precursor cells. This new method produces mature, functional NK cells with higher efficiency to enable rapid production of an essentially unlimited number of homogenous NK cells that can be used for standardized, targeted immunotherapy for the treatment of refractory cancers and infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331:44–49

    Article  CAS  Google Scholar 

  2. Morvan MG, Lanier LL (2016) NK cells and cancer: you can teach innate cells new tricks. Nat Rev Cancer 16(1):7–19

    Article  CAS  Google Scholar 

  3. Jing Y, Ni Z, Wu J, Higgins L, Markowski TW, Kaufman DS, Walcheck B (2015) Identification of an ADAM17 cleavage region in human CD16 (FcgammaRIII) and the engineering of a non-cleavable version of the receptor in NK cells. PLoS One 10(3):e0121788

    Article  Google Scholar 

  4. Angelos MG, Ruh PN, Webber BR, Blum RH, Ryan CD, Bendzick L, Shim S, Yingst AM, Tufa DM, Verneris MR, Kaufman DS (2017) Aryl hydrocarbon receptor inhibition promotes hematolymphoid development from human pluripotent stem cells. Blood 129(26):3428–3439

    Article  CAS  Google Scholar 

  5. Ferrell PI, Xi J, Ma C, Adlakha M, Kaufman DS (2015) The RUNX1 +24 enhancer and P1 promoter identify a unique subpopulation of hematopoietic progenitor cells derived from human pluripotent stem cells. Stem Cells 33(4):1130–1141

    Article  CAS  Google Scholar 

  6. Woll PS, Grzywacz B, Tian X, Marcus RK, Knorr DA, Verneris MR, Kaufman DS (2009) Human embryonic stem cells differentiate into a homogeneous population of natural killer cells with potent in vivo antitumor activity. Blood 113(24):6094–6101

    Article  CAS  Google Scholar 

  7. Ni ZY, Knorr DA, Clouser CL, Hexum MK, Southern P, Mansky LM, Park IH, Kaufman DS (2011) Human pluripotent stem cells produce natural killer cells that mediate anti-HIV-1 activity by utilizing diverse cellular mechanisms. J Virol 85(1):43–50

    Article  CAS  Google Scholar 

  8. Knorr DA, Ni Z, Hermanson D, Hexum MK, Bendzick L, Cooper LJ, Lee DA, Kaufman DS (2013) Clinical-scale derivation of natural killer cells from human pluripotent stem cells for cancer therapy. Stem Cells Transl Med 2(4):274–283

    Article  CAS  Google Scholar 

  9. Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, McKenna D, Le C, Defor TE, Burns LJ, Orchard PJ, Blazar BR, Wagner JE, Slungaard A, Weisdorf DJ, Okazaki IJ, McGlave PB (2005) Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105(8):3051–3057

    Article  CAS  Google Scholar 

  10. Romee R, Rosario M, Berrien-Elliott MM, Wagner JA, Jewell BA, Schappe T, Leong JW, Abdel-Latif S, Schneider SE, Willey S, Neal CC, Yu L, Oh ST, Lee YS, Mulder A, Claas F, Cooper MA, Fehniger TA (2016) Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci Transl Med 8(357):357ra123

    Article  Google Scholar 

  11. Verneris MR, Miller JS (2009) The phenotypic and functional characteristics of umbilical cord blood and peripheral blood natural killer cells. Br J Haematol 147(2):185–191

    Article  CAS  Google Scholar 

  12. Tonn T, Schwabe D, Klingemann HG, Becker S, Esser R, Koehl U, Suttorp M, Seifried E, Ottmann OG, Bug G (2013) Treatment of patients with advanced cancer with the natural killer cell line NK-92. Cytotherapy 15(12):1563–1570

    Article  CAS  Google Scholar 

  13. Zhu H, Lai YS, Li Y, Blum RH, Kaufman DS (2018) Concise review: human pluripotent stem cells to produce cell-based cancer immunotherapy. Stem Cells 36(2):134–145

    Article  Google Scholar 

  14. Passweg JR, Tichelli A, Meyer-Monard S, Heim D, Stern M, Kuhne T, Favre G, Gratwohl A (2004) Purified donor NK-lymphocyte infusion to consolidate engraftment after haploidentical stem cell transplantation. Leukemia 18(11):1835–1838

    Article  CAS  Google Scholar 

  15. Ni ZY, Knorr DA, Bendzick L, Allred J, Kaufman DS (2014) Expression of chimeric receptor CD4 zeta by natural killer cells derived from human pluripotent stem cells improves in vitro activity but does not enhance suppression of HIV infection in vivo. Stem Cells 32(4):1021–1031

    Article  CAS  Google Scholar 

  16. Sugimura R, Jha DK, Han A, Soria-Valles C, da Rocha EL, Lu YF, Goettel JA, Serrao E, Rowe RG, Malleshaiah M, Wong I, Sousa P, Zhu TN, Ditadi A, Keller G, Engelman AN, Snapper SB, Doulatov S, Daley GQ (2017) Haematopoietic stem and progenitor cells from human pluripotent stem cells. Nature 545(7655):432–438

    Article  CAS  Google Scholar 

  17. Woll PS, Martin CH, Miller JS, Kaufman DS (2005) Human embryonic stem cell-derived NK cells acquire functional receptors and cytolytic activity. J Immunol 175(8):5095–5103

    Article  CAS  Google Scholar 

  18. Hermanson DL, Ni Z, Kaufman DS (2015) Human pluripotent stem cells as a renewable source of natural killer cells. In: Cheng T (ed) Hematopoietic differentiation of human pluripotent stem cells. Springer, Dordrecht, pp 69–79

    Chapter  Google Scholar 

  19. Hermanson DL, Bendzick L, Pribyl L, McCullar V, Vogel RI, Miller JS, Geller MA, Kaufman DS (2016) Induced pluripotent stem cell-derived natural killer cells for treatment of ovarian cancer. Stem Cells 34(1):93–101

    Article  CAS  Google Scholar 

  20. Denman CJ, Senyukov VV, Somanchi SS, Phatarpekar PV, Kopp LM, Johnson JL, Singh H, Hurton L, Maiti SN, Huls MH, Champlin RE, Cooper LJ, Lee DA (2012) Membrane-bound IL-21 promotes sustained ex vivo proliferation of human natural killer cells. PLoS One 7(1):e30264

    Article  CAS  Google Scholar 

  21. Ng ES, Davis R, Stanley EG, Elefanty AG (2008) A protocol describing the use of a recombinant protein-based, animal product-free medium (APEL) for human embryonic stem cell differentiation as spin embryoid bodies. Nat Protoc 3(5):768–776

    Article  CAS  Google Scholar 

  22. Claassen DA, Desler MM, Rizzino A (2009) ROCK inhibition enhances the recovery and growth of cryopreserved human embryonic stem cells and human induced pluripotent stem cells. Mol Reprod Dev 76(8):722–732

    Article  CAS  Google Scholar 

  23. Zou L, Chen QS, Quanbeck Z, Bechtold JE, Kaufman DS (2016) Angiogenic activity mediates bone repair from human pluripotent stem cell-derived osteogenic cells. Sci Rep-Uk 6

    Google Scholar 

  24. Ludwig TE, Bergendahl V, Levenstein ME, Yu J, Probasco MD, Thomson JA (2006) Feeder-independent culture of human embryonic stem cells. Nat Methods 3(8):637–646

    Article  CAS  Google Scholar 

  25. Hexum MK, Tian X, Kaufman DS (2011) In vivo evaluation of putative hematopoietic stem cells derived from human pluripotent stem cells. Methods Mol Biol 767:433–447

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huang Zhu or Dan S. Kaufman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhu, H., Kaufman, D.S. (2019). An Improved Method to Produce Clinical-Scale Natural Killer Cells from Human Pluripotent Stem Cells. In: Kaneko, S. (eds) In Vitro Differentiation of T-Cells. Methods in Molecular Biology, vol 2048. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9728-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9728-2_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9727-5

  • Online ISBN: 978-1-4939-9728-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics