Chip-SIP: Stable Isotope Probing Analyzed with rRNA-Targeted Microarrays and NanoSIMS

  • Xavier MayaliEmail author
  • Peter K. Weber
  • Erin Nuccio
  • Jory Lietard
  • Mark Somoza
  • Steven J. Blazewicz
  • Jennifer Pett-Ridge
Part of the Methods in Molecular Biology book series (MIMB, volume 2046)


Chip-SIP is a stable isotope probing (SIP) method for linking microbial identity and function in mixed communities and is capable of analyzing multiple isotopes (13C, 15N, and 18O) simultaneously. This method uses a high-density microarray to separate taxon-specific 16S (or 18S) rRNA genes and a high sensitivity magnetic sector secondary ion mass spectrometer (SIMS) to determine the relative isotope incorporation of the rRNA at each probe location. Using a maskless array synthesizer (MAS), we synthesize multiple unique sequences to target hundreds of taxa at the ribosomal operational taxonomic unit (OTU) level on an array surface, and then analyze it with a NanoSIMS 50, using its high-spatial resolution imaging capability to generate isotope ratios for individual probes. The Chip-SIP method has been used in diverse systems, including surface marine and estuarine water, rhizosphere, and peat soils, to quantify taxon-specific relative incorporation of different substrates in complex microbial communities. Depending on the hypothesis and experimental design, Chip-SIP allows the user to compare the same community incorporating different substrates, different communities incorporating the same substrate(s), or quantify how a community responds to treatment effects, such as temperature or nutrient concentrations.

Key words

Stable isotope probing NanoSIMS 16S rRNA Microbial ecology Microarrays 131518



The work leading to the results presented in the chapter was performed under the auspices of the US Department of Energy at the Lawrence Livermore National Laboratory under Contract DEAC52-07NA27344. Funding provided by the Genomic Sciences Program from DOE-OBER through the Biofuels Science Focus Area Grant SCW1039 and the microbial carbon cycle program grant # SCW1590. LLNL’s Laboratory Directed Research and Development Program (07-ERD-053) and the Austrian Science Fund (FWF P23797 P27275 and P30596) is acknowledged.


  1. 1.
    Murrell JC, Whiteley AS (2011) Stable isotope probing and related technologies. ASM Press, Washington, DCCrossRefGoogle Scholar
  2. 2.
    Jehmlich N, Schmidt F, Taubert M, Seifert J, Bastida F, von Bergen M et al (2010) Protein stable isotope probing (protein-SIP). Nat Protoc 5:1957–1966CrossRefGoogle Scholar
  3. 3.
    Behrens S, Losekann T, Pett-Ridge J, Weber PK, Ng W, Stevenson BS et al (2008) Linking microbial phylogeny to metabolic activity at the single-cell level by using enhanced element labeling-catalyzed reporter deposition Fluorescence In Situ Hybridization (EL-FISH) and NanoSIMS. Appl Environ Microbiol 74:3143CrossRefGoogle Scholar
  4. 4.
    Adamczyk J, Hesselsoe M, Iversen N, Horn M, Lehner A, Nielsen PH et al (2003) The isotope array: a new tool that employs substrate-mediated labeling of rRNA for determination of microbial community structure and function. Appl Environ Microbiol 69:6875–6887CrossRefGoogle Scholar
  5. 5.
    Radajewski S, Ineson P, Parekh NR, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649CrossRefGoogle Scholar
  6. 6.
    Dumont MG, Radajewski SM, Miguez CB, McDonald IR, Murrell JC (2006) Identification of a complete methane monooxygenase operon from soil by combining stable isotope probing and metagenomic analysis. Environ Microbiol 8:1240–1250CrossRefGoogle Scholar
  7. 7.
    Kalyuzhnaya MG, Lapidus A, Ivanova N, Copeland AC, McHardy AC, Szeto E et al (2008) High-resolution metagenomics targets specific functional types in complex microbial communities. Nat Biotechnol 26:1029–1034CrossRefGoogle Scholar
  8. 8.
    Dumont MG, Pommerenke B, Casper P (2013) Using stable isotope probing to obtain a targeted metatranscriptome of aerobic methanotrophs in lake sediment. Environ Microbiol Reports 5:757–764Google Scholar
  9. 9.
    Hungate BA, Mau RL, Schwartz E, Caporaso JG, Dijkstra P et al (2015) Quantitative microbial ecology through stable isotope probing. Appl Environ Microbiol 81:7570–7581CrossRefGoogle Scholar
  10. 10.
    Koch BJ, McHugh TA, Hayer M, Schwartz E, Blazewicz SJ, Dijkstra P et al (2018) Estimating taxon-specific population dynamics in intact microbial communities. Ecosphere.
  11. 11.
    Mau RL, Liu CM, Aziz M, Schwartz E, Dijkstra P, Marks JC et al (2014) Linking soil bacterial biodiversity and soil carbon stability. ISME J 9:1477CrossRefGoogle Scholar
  12. 12.
    Amann RI, Krumholz L, Stahl DA (1990) Fluorescent-oligonucleotide probing of whole cells for determinative phylogenetic and environmental studies in microbiology. J Bacteriol 172:762–770CrossRefGoogle Scholar
  13. 13.
    Brodie EL, DeSantis TZ, Joyner DC, Baek SM, Larsen JT, Andersen GL et al (2006) Application of a high-density oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction and reoxidation. Appl Environ Microbiol 72:6288–6298CrossRefGoogle Scholar
  14. 14.
    Mayali X, Weber PK, Brodie EL, Mabery S, Hoeprich P, Pett-Ridge J (2012) High-throughput isotopic analysis of RNA microarrays to quantify microbial resource use. ISME J 6:1210–1221CrossRefGoogle Scholar
  15. 15.
    Mayali X, Weber PK, Pett-Ridge J (2013) Taxon-specific C:N relative use efficiency for amino acids in an estuarine community. FEMS Microbiol Ecol 83:402–412CrossRefGoogle Scholar
  16. 16.
    Mayali X, Weber PK, Mabery S, Pett-Ridge J (2014) Phylogenetic patterns in the microbial response to resource availability: amino acid incorporation in San Francisco Bay. PLoS One 9:e95842CrossRefGoogle Scholar
  17. 17.
    Mayali X, Stewart B, Mabery S, Weber PK (2016) Temporal succession in carbon incorporation from macromolecules by particle-attached bacteria in marine microcosms. Environ Microbiol Rep 8:68–75CrossRefGoogle Scholar
  18. 18.
    Mayali X, Weber PK (2018) Quantitative substrate-specific incorporation reveals niche differentiation in a coastal microbial community. FEMS Microbiol Ecol 94:fiy047CrossRefGoogle Scholar
  19. 19.
    Bryson S, Li Z, Chavez F, Weber PK, Pett-Ridge J, Hettich RL, Pan C et al (2017) Phylogenetically conserved resource partitioning in the coastal microbial loop. ISME J 11:2781CrossRefGoogle Scholar
  20. 20.
    Pett-Ridge J, Firestone MK (2017) Using stable isotopes to explore root-microbe-mineral interactions in soil. Rhizosphere.
  21. 21.
    Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar et al (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371CrossRefGoogle Scholar
  22. 22.
    Wu D, Doroud L, Eisen JA (2013) TreeOTU: operational taxonomic unit classification based on phylogenetic trees. arXiv. arXiv:13086333Google Scholar
  23. 23.
    Agbavwe C, Kim C, Hong D, Heinrich K, Wang T, Somoza MM (2011) Efficiency error and yield in light-directed maskless synthesis of DNA microarrays. J Nanobiotechnol:57. Scholar
  24. 24.
    Sack M, Hölz K, Holik A-K, Kretschy N, Somoza V, Stengele K-P et al (2016) Express photolithographic DNA microarray synthesis with optimized chemistry and high-efficiency photolabile groups. J Nanobiotechnol 14.
  25. 25.
    Sack M, Kretschy N, Rohm B, Somoza V, Somoza MM (2013) Simultaneous light-directed synthesis of mirror-image microarrays in a photochemical reaction cell with flare suppression. Anal Chem 85:8513–8517CrossRefGoogle Scholar
  26. 26.
    Hölz K, Lietard J, Somoza MM (2017) High-Power 365 nm UV LED mercury arc lamp replacement for photochemistry and chemical photolithography. ACS Sustain Chem Eng 5:828–834CrossRefGoogle Scholar
  27. 27.
    Franssen-van Hal NLW, van der Putte P, Hellmuth K, Matysiak S, Kretschy N, Somoza MM (2013) Optimized light-directed synthesis of aptamer microarrays. Anal Chem 85:5950–5957CrossRefGoogle Scholar
  28. 28.
    Singh-Gasson S, Green RD, Yue Y, Nelson C, Blattner F, Sussman MR et al (1999) Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array. Nat Biotechnol 17:974–978CrossRefGoogle Scholar
  29. 29.
    Lietard J, Abou Assi H, Gómez-Pinto I, González C, Somoza MM, Damha MJ (2017) Mapping the affinity landscape of thrombin-binding aptamers on 2′F-ANA/DNA chimeric G-quadruplex microarrays. Nucleic Acids Res 45:1619–1632PubMedPubMedCentralGoogle Scholar
  30. 30.
    Lietard J, Ameur D, Damha M, Somoza MM (2018) High-density RNA microarrays synthesized in situ by photolithography. Angew Chem Int Ed.
  31. 31.
    Kretschy N, Holik A-K, Somoza V, Stengele K-P, Somoza MM (2015) Next-generation o-nitrobenzyl photolabile groups for light-directed chemistry and microarray synthesis. Angew Chem Int Ed 54:8555–8559CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xavier Mayali
    • 1
    Email author
  • Peter K. Weber
    • 1
  • Erin Nuccio
    • 1
  • Jory Lietard
    • 2
  • Mark Somoza
    • 2
  • Steven J. Blazewicz
    • 1
  • Jennifer Pett-Ridge
    • 1
  1. 1.Physical and Life Sciences DirectorateLawrence Livermore National LaboratoryLivermoreUSA
  2. 2.Institute of Inorganic ChemistryFaculty of Chemistry, University of ViennaViennaAustria

Personalised recommendations