Purinergic Signaling pp 107-116 | Cite as
Histochemical Approach for Simultaneous Detection of Ectonucleotidase and Alkaline Phosphatase Activities in Tissues
- 2 Citations
- 697 Downloads
Abstract
Studies on pathophysiology and the therapeutic potential of extracellular ATP and other purines represent an important and rapidly evolving field. The integral response of the cell is determined by multiple factors, including the release of endogenous ATP, co-expression of different types of nucleotide- and adenosine-selective receptors, as well as the specific makeup of ectoenzymes governing the duration and magnitude of purinergic signaling. Current findings support the presence of an extensive network of purine-converting ectoenzymes that are co-expressed to a variable extent among the mammalian tissues and share similarities in substrate specificity. Here, we describe a histochemical approach for simultaneous detection of ecto-nucleotidase and tissue-nonspecific alkaline phosphatase (TNAP) activities in the same tissue slice. Further employment of this technique for staining human palatine tonsil cryosections revealed selective distribution of the key ectoenzymes within certain tonsillar structures, including germinal centers and connective tissues (ecto-5′-nucleotidase/CD73), as well as interfollicular area (TNAP and NTPDase1/CD39).
Key words
Enzyme histochemistry NTPDase1/CD39 Ecto-5′-nucleotidase/CD73 Tissue-nonspecific alkaline phosphatase Human tonsilsReferences
- 1.Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50(3):413–492Google Scholar
- 2.Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim Biophys Acta 1783(5):673–694CrossRefGoogle Scholar
- 3.Yegutkin GG (2014) Enzymes involved in metabolism of extracellular nucleotides and nucleosides: Functional implications and measurement of activities. Crit Rev Biochem Mol Biol 49(6):473–497CrossRefGoogle Scholar
- 4.Zimmermann H, Zebisch M, Strater N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8(3):437–502CrossRefGoogle Scholar
- 5.Eltzschig HK, Sitkovsky MV, Robson SC (2012) Purinergic signaling during inflammation. N Engl J Med 367(24):2322–2333CrossRefGoogle Scholar
- 6.Kauffenstein G, Drouin A, Thorin-Trescases N, Bachelard H, Robaye B, D’Orleans-Juste P, Marceau F, Thorin E, Sevigny J (2010) NTPDase1 (CD39) controls nucleotide-dependent vasoconstriction in mouse. Cardiovasc Res 85(1):204–213CrossRefGoogle Scholar
- 7.Buchet R, Millan JL, Magne D (2013) Multisystemic functions of alkaline phosphatases. Methods Mol Biol 1053:27–51CrossRefGoogle Scholar
- 8.Yegutkin GG, Auvinen K, Rantakari P, Hollmen M, Karikoski M, Grenman R, Elima K, Jalkanen S, Salmi M (2015) Ecto-5′-nucleotidase/CD73 enhances endothelial barrier function and sprouting in blood but not lymphatic vasculature. Eur J Immunol 45(2):562–573CrossRefGoogle Scholar
- 9.Langer D, Hammer K, Koszalka P, Schrader J, Robson S, Zimmermann H (2008) Distribution of ectonucleotidases in the rodent brain revisited. Cell Tissue Res 334(2):199–217CrossRefGoogle Scholar
- 10.Maj T, Wang W, Crespo J, Zhang H, Wei S, Zhao L, Vatan L, Shao I, Szeliga W, Lyssiotis C, Liu JR, Kryczek I, Zou W (2017) Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat Immunol 18(12):1332–1341CrossRefGoogle Scholar
- 11.Allard B, Longhi MS, Robson SC, Stagg J (2017) The ectonucleotidases CD39 and CD73: novel checkpoint inhibitor targets. Immunol Rev 276(1):121–144CrossRefGoogle Scholar
- 12.Wachstein M, Meisel E (1957) Histochemistry of hepatic phosphatases of a physiologic pH; with special reference to the demonstration of bile canaliculi. Am J Clin Pathol 27(1):13–23CrossRefGoogle Scholar
- 13.Street SE, Kramer NJ, Walsh PL, Taylor-Blake B, Yadav MC, King IF, Vihko P, Wightman RM, Millan JL, Zylka MJ (2013) Tissue-nonspecific alkaline phosphatase acts redundantly with PAP and NT5E to generate adenosine in the dorsal spinal cord. J Neurosci 33(27):11314–11322CrossRefGoogle Scholar
- 14.Mercier N, Kiviniemi TO, Saraste A, Miiluniemi M, Silvola J, Jalkanen S, Yegutkin GG (2012) Impaired ATP-induced coronary blood flow and diminished aortic NTPDase activity precede lesion formation in apolipoprotein E-deficient mice. Am J Pathol 180(1):419–428CrossRefGoogle Scholar
- 15.Yegutkin GG, Guerrero-Toro C, Kilinc E, Koroleva K, Ishchenko Y, Abushik P, Giniatullina R, Fayuk D, Giniatullin R (2016) Nucleotide homeostasis and purinergic nociceptive signaling in rat meninges in migraine-like conditions. Purinergic Signal 12(3):561–574CrossRefGoogle Scholar
- 16.Aliagas E, Vidal A, Torrejon-Escribano B, Taco Mdel R, Ponce J, de Aranda IG, Sevigny J, Condom E, Martin-Satue M (2013) Ecto-nucleotidases distribution in human cyclic and postmenopausic endometrium. Purinergic Signal 9(2):227–237CrossRefGoogle Scholar
- 17.Villamonte ML, Torrejon-Escribano B, Rodriguez-Martinez A, Trapero C, Vidal A, Gomez de Aranda I, Sevigny J, Matias-Guiu X, Martin-Satue M (2018) Characterization of ecto-nucleotidases in human oviducts with an improved approach simultaneously identifying protein expression and in situ enzyme activity. Histochem Cell Biol 149(3):269–276CrossRefGoogle Scholar