Developmental Expression of Ectonucleotidase and Purinergic Receptors Detection by Whole-Mount In Situ Hybridization in Xenopus Embryos

  • Camille Blanchard
  • Karine MasséEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2041)


Xenopus embryos are one of the most used animal models in developmental biology and are well suited for apprehending functions of signaling pathways during embryogenesis. To do so, it is necessary to be able to detect expression pattern of the key genes of these signaling pathways. Here we describe the whole-mount in situ hybridization technique to investigate the expression pattern of ectonucleotidases and purinergic receptors during embryonic development.

Key words

P2X receptors Ectonucleotidases Purinergic signaling pathway Whole-mount in situ hybridization Expression pattern Xenopus embryo 


  1. 1.
    Gall JG, Pardue ML (1969) Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci U S A 63:378–383CrossRefGoogle Scholar
  2. 2.
    Tautz D, Pfeifle C (1989) A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98:81–85CrossRefGoogle Scholar
  3. 3.
    Hemmati-Brivanlou A, Frank D, Bolce ME, Brown BD, Sive HL, Harland RM (1990) Localization of specific mRNAs in Xenopus embryos by whole-mount in situ hybridization. Development 110:325–330PubMedGoogle Scholar
  4. 4.
    Harland RM (1991) In situ hybridization: an improved whole-mount method for Xenopus embryos. Methods Cell Biol 36:685–695CrossRefGoogle Scholar
  5. 5.
    Sive HL, Grainger RM, Harland RM (2000) Whole-mount in situ hybridization. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  6. 6.
    Monsoro-Burq AH (2007) A rapid protocol for whole-mount in situ hybridization on Xenopus embryos. CSH Protoc 2007.
  7. 7.
    Saint-Jeannet JP (2017) Whole-mount in situ hybridization of Xenopus embryos. Cold Spring Harb Protoc.
  8. 8.
    Spemann H, Mangold H (1924) Induction of embryonic primordia by implantation of organizers from different species. In: Willier BH, Oppen-heimer JM (eds) Foundations of experimental embryology. Hafner, New York, pp 144–184Google Scholar
  9. 9.
    Gould SE, Grainger RM (1997) Neural induction and antero-posterior patterning in the amphibian embryo: past, present and future. Cell Mol Life Sci 53:319–338CrossRefGoogle Scholar
  10. 10.
    Session AM, Uno Y, Kwon T et al (2016) Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538:336–343CrossRefGoogle Scholar
  11. 11.
    Sater AK, Moody SA (2016) Using Xenopus to understand human disease and developmental disorders. Genesis 55.
  12. 12.
    Tandon P, Conlon F, Furlow JD, Horb ME (2017) Expanding the genetic toolkit in Xenopus: approaches and opportunities for human disease modeling. Dev Biol 426:325–335CrossRefGoogle Scholar
  13. 13.
    Massé K, Eason R, Bhamra S, Dale N, Jones EA (2006) Comparative genomic and expression analysis of the conserved NTPDase gene family in Xenopus. Genomics 87:366–381CrossRefGoogle Scholar
  14. 14.
    Massé K, Bhamra S, Allsop G, Dale N, Jones EA (2010) Ectophosphodiesterase/nucleotide phosphohydrolase (Enpp) nucleotidases: cloning, conservation and developmental restriction. Int J Dev Biol 54:181–193CrossRefGoogle Scholar
  15. 15.
    Blanchard C, Boué-Grabot E, Massé K (2019) Comparative embryonic spatio-temporal expression profile map of the Xenopus P2X receptor family Frontiers in Cellular Neuroscience.
  16. 16.
    Massé K, Dale N (2012) Purines as potential morphogens during embryonic development. Purinergic Signal 8:503–521CrossRefGoogle Scholar
  17. 17.
    Massé K, Bhamra S, Eason R, Dale N, Jones EA (2007) Purine-mediated signalling triggers eye development. Nature 449:1058–1062CrossRefGoogle Scholar
  18. 18.
    Jowett T, Lettice L (1994) Whole-mount in situ hybridizations on zebrafish embryos using a mixture of digoxigenin- and fluorescein-labelled probes. Trends Genet 10:73–74CrossRefGoogle Scholar
  19. 19.
    Koga M, Kudoh T, Hamada Y, Watanabe M, Kageura H (2007) A new triple staining method for double in situ hybridization in combination with cell lineage tracing in whole-mount Xenopus embryos. Dev Growth Differ 49:635–645CrossRefGoogle Scholar
  20. 20.
    Nieuwkoop F (1994) Normal table of Xenopus laevis (Daudin). Garland Publishing Inc., New York. ISBN: 0-8153-1896-0Google Scholar
  21. 21.
    David R, Wedlich D (2001) PCR-based RNA probes: a quick and sensitive method to improve whole mount embryo in situ hybridizations. Biotechniques 30:769–772CrossRefGoogle Scholar
  22. 22.
    Oschwald R, Richter K, Grunz H (1991) Localization of a nervous system-specific class II beta-tubulin gene in Xenopus laevis embryos by whole-mount in situ hybridization. Int J Dev Biol 35:399–405PubMedGoogle Scholar
  23. 23.
    Mizuseki K, Kishi M, Shiota K, Nakanishi S, Sasai Y (1998) SoxD: an essential mediator of induction of anterior neural tissues in Xenopus embryos. Neuron 21:77–85CrossRefGoogle Scholar
  24. 24.
    Penzel R, Oschwald R, Chen Y, Tacke L, Grunz H (1997) Characterization and early embryonic expression of a neural specific transcription factor xSOX3 in Xenopus laevis. Int J Dev Biol 41:667–677PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293BordeauxFrance
  2. 2.CNRS, Institut des Maladies Neurodégénératives, UMR 5293BordeauxFrance
  3. 3.INSERM, U1215, Neurocentre Magendie, Univ. de BordeauxBordeauxFrance

Personalised recommendations