Advertisement

Homology Modeling of P2X Receptors

  • Anastasios Stavrou
  • Sudad Dayl
  • Ralf SchmidEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2041)

Abstract

Since the X-ray structure of the zebra fish P2X4 receptor in the closed state was published in 2009 homology modeling has been used to generate structural models for P2X receptors. In this chapter, we outline how to use the MODELLER software to generate such structural models for P2X receptors whose structures have not been solved yet.

Key words

Homology modeling Protein structure prediction MODELLER software P2X receptor Ion channel 

References

  1. 1.
    Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Gallo Cassarino T, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258CrossRefGoogle Scholar
  2. 2.
    Bordoli L, Schwede T (2012) Automated protein structure modeling with SWISS-MODEL workspace and the protein model portal. Methods Mol Biol 857:107–136CrossRefGoogle Scholar
  3. 3.
    Webb B, Sali A (2014) Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics 47:5.6.1–5.6.32CrossRefGoogle Scholar
  4. 4.
    Schmidt T, Bergner A, Schwede T (2014) Modelling three-dimensional protein structures for applications in drug design. Drug Discov Today 19:890–897CrossRefGoogle Scholar
  5. 5.
    Burnstock G, Kennedy C (2011) P2X receptors in health and disease. Adv Pharmacol 61:333–372CrossRefGoogle Scholar
  6. 6.
    Kawate T, Michel JC, Birdsong WT, Gouaux E (2009) Crystal structure of the ATP-gated P2X(4) ion channel in the closed state. Nature 460:592–598CrossRefGoogle Scholar
  7. 7.
    Hattori M, Gouaux E (2012) Molecular mechanism of ATP binding and ion channel activation in P2X receptors. Nature 485:207–212CrossRefGoogle Scholar
  8. 8.
    Mansoor SE, Lu W, Oosterheert W, Shekhar M, Tajkhorshid E, Gouaux E (2016) X-ray structures define human P2X(3) receptor gating cycle and antagonist action. Nature 538:66–71CrossRefGoogle Scholar
  9. 9.
    Grimes L, Young MT (2015) Purinergic P2X receptors: structural and functional features depicted by X-ray and molecular modelling studies. Curr Med Chem 22:783–798CrossRefGoogle Scholar
  10. 10.
    Pasqualetto G, Brancale A, Young MT (2018) The molecular determinants of small-molecule ligand binding at P2X receptors. Front Pharmacol 9:58CrossRefGoogle Scholar
  11. 11.
    Fiser A, Do RK, Sali A (2000) Modeling of loops in protein structures. Protein Sci 9:1753–1773CrossRefGoogle Scholar
  12. 12.
    Allsopp RC, El Ajouz S, Schmid R, Evans RJ (2011) Cysteine scanning mutagenesis (residues Glu52-Gly96) of the human P2X1 receptor for ATP: mapping agonist binding and channel gating. J Biol Chem 286:29207–29217CrossRefGoogle Scholar
  13. 13.
    Roberts JA, Allsopp RC, El Ajouz S, Vial C, Schmid R, Young MT, Evans RJ (2012) Agonist binding evokes extensive conformational changes in the extracellular domain of the ATP-gated human P2X1 receptor ion channel. Proc Natl Acad Sci U S A 109:4663–4667CrossRefGoogle Scholar
  14. 14.
    Allsopp RC, Dayl S, Bin Dayel A, Schmid R, Evans RJ (2018) Mapping the allosteric action of antagonists A740003 and A438079 reveals a role for the left flipper in ligand sensitivity at P2X7 receptors. Mol Pharmacol 93:553–562CrossRefGoogle Scholar
  15. 15.
    Allsopp RC, Dayl S, Schmid R, Evans RJ (2017) Unique residues in the ATP gated human P2X7 receptor define a novel allosteric binding pocket for the selective antagonist AZ10606120. Sci Rep 7:725CrossRefGoogle Scholar
  16. 16.
    Huo H, Fryatt AG, Farmer LK, Schmid R, Evans RJ (2018) Mapping the binding site of the P2X receptor antagonist PPADS reveals the importance of orthosteric site charge and the cysteine-rich head region. J Biol Chem 293:12820–12831CrossRefGoogle Scholar
  17. 17.
    Fryatt AG, Dayl S, Cullis PM, Schmid R, Evans RJ (2016) Mechanistic insights from resolving ligand-dependent kinetics of conformational changes at ATP-gated P2X1R ion channels. Sci Rep 6:32918CrossRefGoogle Scholar
  18. 18.
    Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 36:W5–W9CrossRefGoogle Scholar
  19. 19.
    Roberts JA, Digby HR, Kara M, Ajouz SE, Sutcliffe MJ, Evans RJ (2008) Cysteine substitution mutagenesis and the effects of methanethiosulfonate reagents at P2X(2) and P2X(4) receptors support a core common mode of ATP action at P2X receptors. J Biol Chem 283:20126–20136CrossRefGoogle Scholar
  20. 20.
    Shen M, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci 15:2507–2524CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Molecular and Cell BiologyUniversity of LeicesterLeicesterUK
  2. 2.Department of Chemistry, College of ScienceUniversity of BaghdadBaghdadIraq
  3. 3.Leicester Institute of Structural and Chemical Biology (LISCB)University of LeicesterLeicesterUK

Personalised recommendations