Advertisement

Using FRET-Based Fluorescent Sensors to Monitor Cytosolic and Membrane-Proximal Extracellular ATP Levels

  • Klaus E. Kaschubowski
  • Axel E. Kraft
  • Viacheslav O. Nikolaev
  • Friedrich HaagEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2041)

Abstract

The assessment of local concentrations of extracellular ATP (eATP) at the site of receptor binding remains a challenge in the field of purinergic signaling. In many cases, biosensors exploiting the principle of Förster resonance energy transfer (FRET) have provided useful tools to visualize local concentrations of metabolites. A series of FRET-based biosensors based on the epsilon subunits of bacterial ATP synthases have been described for the visualisation of ATP. These sensors carry ATP-sensing units with different affinities for ATP, permitting imaging of ATP under the widely different concentration conditions found in subcellular locations such as the cytoplasm and the membrane-proximal extracellular space.

Key words

FRET Microscopy FACS Live-cell imaging Biosensor Extracellular ATP 

Notes

Acknowledgments

We thank G. Dubberke for technical assistance. This study was supported by the Deutsche Forschungsgemeinschaft (SFB1328 and grant Ha2569/5).

References

  1. 1.
    Trautmann A (2009) Extracellular ATP in the immune system: more than just a “danger signal”. Sci Signal 2(56):pe6.  https://doi.org/10.1126/scisignal.256pe6CrossRefPubMedGoogle Scholar
  2. 2.
    Cekic C, Linden J (2016) Purinergic regulation of the immune system. Nat Rev Immunol 16(3):177–192.  https://doi.org/10.1038/nri.2016.4CrossRefPubMedGoogle Scholar
  3. 3.
    Hou BH, Takanaga H, Grossmann G, Chen LQ, Qu XQ, Jones AM, Lalonde S, Schweissgut O, Wiechert W, Frommer WB (2011) Optical sensors for monitoring dynamic changes of intracellular metabolite levels in mammalian cells. Nat Protoc 6(11):1818–1833.  https://doi.org/10.1038/nprot.2011.392CrossRefPubMedGoogle Scholar
  4. 4.
    Kraft AE, Nikolaev VO (2017) FRET microscopy for real-time visualization of second messengers in living cells. Methods Mol Biol 1563:85–90.  https://doi.org/10.1007/978-1-4939-6810-7_6CrossRefPubMedGoogle Scholar
  5. 5.
    Sprenger JU, Bork NI, Herting J, Fischer TH, Nikolaev VO (2016) Interactions of calcium fluctuations during cardiomyocyte contraction with real-time cAMP dynamics detected by FRET. PLoS One 11(12):e0167974.  https://doi.org/10.1371/journal.pone.0167974CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Imamura H, Nhat KP, Togawa H, Saito K, Iino R, Kato-Yamada Y, Nagai T, Noji H (2009) Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc Natl Acad Sci U S A 106(37):15651–15656.  https://doi.org/10.1073/pnas.0904764106CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sprenger JU, Perera RK, Gotz KR, Nikolaev VO (2012) FRET microscopy for real-time monitoring of signaling events in live cells using unimolecular biosensors. J Vis Exp (66):e4081.  https://doi.org/10.3791/4081
  8. 8.
    Seman M, Adriouch S, Scheuplein F, Krebs C, Freese D, Glowacki G, Deterre P, Haag F, Koch-Nolte F (2003) NAD-induced T cell death: ADP-ribosylation of cell surface proteins by ART2 activates the cytolytic P2X7 purinoceptor. Immunity 19(4):571–582CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Klaus E. Kaschubowski
    • 1
  • Axel E. Kraft
    • 2
  • Viacheslav O. Nikolaev
    • 2
  • Friedrich Haag
    • 1
    Email author
  1. 1.Institute of ImmunologyUniversity Medical Center Hamburg-EppendorfHamburgGermany
  2. 2.Institute of Experimental Cardiovascular ResearchUniversity Medical Center Hamburg-EppendorfHamburgGermany

Personalised recommendations