Studying a Light Sensor with Light: Multiphoton Imaging in the Retina

  • Thomas EulerEmail author
  • Katrin Franke
  • Tom Baden
Part of the Neuromethods book series (NM, volume 148)


Two-photon imaging of light stimulus-evoked neuronal activity has been used to study all neuron classes in the vertebrate retina, from the photoreceptors to the retinal ganglion cells. Clearly, the ability to study retinal circuits down to the level of single synapses or zoomed out at the level of complete populations of neurons has been a major asset in our understanding of this beautiful circuit. In this chapter, we discuss the possibilities and pitfalls of using an all-optical approach in this highly light-sensitive part of the brain.


Vertebrate retina Mouse Zebrafish Two-photon microscopy Biosensor Activity probes Visual stimulus-evoked activity Laser-evoked retinal activity 


  1. 1.
    Denk W, Strickler JH, Webb WW et al (1990) Two-photon laser scanning fluorescence microscopy. Science 248(4951):73–76PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Denk W, Detwiler PB (1999) Optical recording of light-evoked calcium signals in the functionally intact retina. Proc Natl Acad Sci U S A 96:7035–7040PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Euler T, Hausselt SE, Margolis DJ et al (2009) Eyecup scope–optical recordings of light stimulus-evoked fluorescence signals in the retina. Pflugers Arch Eur J Physiol 457:1393–1414CrossRefGoogle Scholar
  4. 4.
    Wei T, Schubert T, Paquet-Durand F et al (2012) Light-driven calcium signals in mouse cone photoreceptors. J Neurosci 32:6981–6994PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Akerboom J, Chen TW, Wardill TJ et al (2012) Optimization of a GCaMP calcium indicator for neural activity imaging. J Neurosci 32:13819–13840PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Chen T-W, Wardill TJ, Sun Y et al (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499:295–300PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Marvin JS, Borghuis BG, Tian L et al (2013) An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat Methods 10:162–170PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Wu J, Abdelfattah AS, Zhou H et al (2018) Genetically encoded glutamate indicators with altered color and topology. ACS Chem Biol.
  9. 9.
    Marvin JS, Scholl B, Wilson DE et al (2017) Stability, affinity and chromatic variants of the glutamate sensor iGluSnFR. bioRxiv.
  10. 10.
    Dreosti E, Odermatt B, Dorostkar MM et al (2009) A genetically encoded reporter of synaptic activity in vivo. Nat Methods 6:883–889PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Baden T, Esposti F, Nikolaev A et al (2011) Spikes in retinal bipolar cells phase-lock to visual stimuli with millisecond precision. Curr Biol 21:1859–1869PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Esposti F, Johnston J, Rosa JM et al (2013) Olfactory stimulation selectively modulates the OFF pathway in the retina of zebrafish. Neuron 79:97–110PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Nikolaev A, Leung K-M, Odermatt B et al (2013) Synaptic mechanisms of adaptation and sensitization in the retina. Nat Neurosci 16:934–941PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Odermatt B, Nikolaev A, Lagnado L (2012) Encoding of luminance and contrast by linear and nonlinear synapses in the retina. Neuron 73:758–773PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Rosa JM, Ruehle S, Ding H et al (2016) Crossover inhibition generates sustained visual responses in the inner retina. Neuron 90(2):308–319PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Zimmermann MJ, Nevala NE, Yoshimatsu T et al (2017) Zebrafish differentially process colour across visual space to match natural scenes. bioRxiv.
  17. 17.
    Antinucci P, Suleyman O, Monfries C et al (2016) Neural mechanisms generating orientation selectivity in the retina. Curr Biol 26:1802–1815PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Hasan MT, Friedrich RW, Euler T et al (2004) Functional fluorescent Ca2+ indicator proteins in transgenic mice under TET control. PLoS Biol 2:e163PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Chen Q, Pei Z, Koren D et al (2016) Stimulus-dependent recruitment of lateral inhibition underlies retinal direction selectivity. Elife 5:1–19Google Scholar
  20. 20.
    Yonehara K, Farrow K, Ghanem A et al (2013) The first stage of cardinal direction selectivity is localized to the dendrites of retinal ganglion cells. Neuron 79:1078–1085CrossRefGoogle Scholar
  21. 21.
    Vaney DI, Sivyer B, Taylor WR (2012) Direction selectivity in the retina: symmetry and asymmetry in structure and function. Nat Rev Neurosci 13:194–208PubMedCrossRefGoogle Scholar
  22. 22.
    Duebel J, Haverkamp S, Schleich W et al (2006) Two-photon imaging reveals somatodendritic chloride gradient in retinal ON-type bipolar cells expressing the biosensor clomeleon. Neuron 49:81–94PubMedCrossRefGoogle Scholar
  23. 23.
    Borghuis BG, Marvin JS, Looger LL et al (2013) Two-photon imaging of nonlinear glutamate release dynamics at bipolar cell synapses in the mouse retina. J Neurosci 33:10972–10985PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Franke K, Berens P, Schubert T et al (2017) Inhibition decorrelates visual feature representations in the inner retina. Nature 542:439–444PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Borghuis BG, Looger LL, Tomita S et al (2014) Kainate receptors mediate signalling in both transient and sustained OFF bipolar cell pathways in mouse retina. J Neurosci 34:6128–6139PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Park SJ, Kim IJ, Looger LL et al (2014) Excitatory synaptic inputs to mouse on-off direction-selective retinal ganglion cells lack direction tuning. J Neurosci 34:3976–3981PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Euler T, Detwiler PB, Denk W (2002) Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature 418:845–852CrossRefGoogle Scholar
  28. 28.
    Ding H, Smith RG, Poleg-polsky A et al (2016) Species-specific wiring for direction selectivity in the mammalian retina. Nature 535:1–17Google Scholar
  29. 29.
    Jackman SL, Babai N, Chambers JJ et al (2011) A positive feedback synapse from retinal horizontal cells to cone photoreceptors. PLoS Biol 9:e1001057PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Baden T, Berens P, Franke K et al (2016) The functional diversity of retinal ganglion cells in the mouse. Nature 529:345–350PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Briggman KL, Euler T (2011) Bulk electroporation and population calcium imaging in the adult mammalian retina. J Neurophysiol 105:2601–2609PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Briggman KL, Helmstaedter M, Denk W (2011) Wiring specificity in the direction-selectivity circuit of the retina. Nature 471:183–188CrossRefGoogle Scholar
  33. 33.
    Baden T, Berens P, Bethge M et al (2013) Spikes in mammalian bipolar cells support temporal layering of the inner retina. Curr Biol 23:48–52PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Poleg-Polsky A, Diamond JS (2016) Retinal circuitry balances contrast tuning of excitation and inhibition to enable reliable computation of direction selectivity. J Neurosci 36:5861–5876PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Kemmler R, Schultz K, Dedek K et al (2014) Differential regulation of cone calcium signals by different horizontal cell feedback mechanisms in the mouse retina. J Neurosci 34:11826–11843PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Chapot CA, Behrens C, Rogerson LE et al (2017) Local signals in mouse horizontal cell dendrites. Curr Biol 27:3603–3615.e5PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Baden T, Nikolaev A, Esposti F et al (2014) A Synaptic mechanism for temporal filtering of visual signals. PLoS Biol 12:e1001972PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Grimes WN, Zhang J, Graydon CW et al (2010) Retinal parallel processors: more than 100 independent microcircuits operate within a single interneuron. Neuron 65:873–885PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Hausselt SE, Euler T, Detwiler PB et al (2007) A dendrite-autonomous mechanism for direction selectivity in retinal starburst amacrine cells. PLoS Biol 5:e185PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Hsiang J-C, Johnson K, Madisen L et al (2017) Local processing of visual information in neurites of VGluT3-expressing amacrine cells. Elife e31307Google Scholar
  41. 41.
    Lee S, Zhang Y, Chen M et al (2016) Segregated glycine-glutamate co-transmission from vGluT3 amacrine cells to contrast-suppressed and contrast-enhanced retinal circuits. Neuron 90:27–34PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Auferkorte ON, Baden T, Kaushalya SK et al (2012) GABA(A) receptors containing the alpha2 subunit are critical for direction-selective inhibition in the retina. PLoS One 7:e35109PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Oesch N, Euler T, Taylor WR (2005) Direction-selective dendritic action potentials in rabbit retina. Neuron 47:739–750PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Solovei I, Kreysing M, Lanctôt C et al (2009) Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell 137:356–368PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Jacobs GH (2012) The evolution of vertebrate color vision. In: López-Larrea J (ed) Sensing in nature. Advances in experimental medicine and biology, vol 739. Springer, New York, pp 156–172CrossRefGoogle Scholar
  46. 46.
    Lewis PR (1955) A theoretical interpretation of spectral sensitivity curves at long wavelengths. J Physiol 130:45–52PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Göppert-Mayer M (1931) Über Elementarakte mit zwei Quantensprüngen. Ann Phys 9:273–294CrossRefGoogle Scholar
  48. 48.
    Reperant J, Ward R, Miceli D et al (2006) The centrifugal visual system of vertebrates: a comparative analysis of its functional anatomical organization. Brain Res Rev 52:1–57PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Werblin FS (1978) Transmission along and between rods in the tiger salamander retina. J Physiol 280:449–470PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Kulkarni M, Schubert T, Baden T et al (2015) Imaging Ca2+ dynamics in cone photoreceptor axon terminals of the mouse retina. J Vis Exp:e52588Google Scholar
  51. 51.
    Kulkarni M, Trifunović D, Schubert T et al (2016) Calcium dynamics change in degenerating cone photoreceptors. Hum Mol Genet 25:3729–3740PubMedCrossRefGoogle Scholar
  52. 52.
    Lin B, Masland RH (2006) Populations of wide-field amacrine cells in the mouse retina. J Comp Neurol 499:797–809PubMedCrossRefGoogle Scholar
  53. 53.
    Peichl L, González-Soriano J (1994) Morphological types of horizontal cell in rodent retinae: a comparison of rat, mouse, gerbil and guinea pig. Vis Neurosci 11:501–517PubMedCrossRefGoogle Scholar
  54. 54.
    Yin L, Masella B, Dalkara D et al (2014) Imaging light responses of foveal ganglion cells in the living macaque eye. J Neurosci 34:6596–6605PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Palczewska G, Dong Z, Golczak M et al (2014) Non-invasive two-photon microscopy imaging of mouse retina and retinal pigment epithelium through the pupil of the eye. Nat Med 20:785–789PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Antinucci P, Hindges R (2016) A crystal-clear zebrafish for in vivo imaging. Sci Rep 6:29490PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Brainard DH (1997) The psychophysics toolbox. Spat Vis 10:433–436PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Breuninger T, Puller C, Haverkamp S et al (2011) Chromatic bipolar cell pathways in the mouse retina. J Neurosci 31:6504–6517PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Baden T, Schubert T, Chang L et al (2013) A tale of two retinal domains: near-optimal sampling of achromatic contrasts in natural scenes through asymmetric photoreceptor distribution. Neuron 80:1206–1217PubMedCrossRefGoogle Scholar
  60. 60.
    Ivanova E, Toychiev AH, Yee CW et al (2013) Optimized protocol for retinal wholemount preparation for imaging and immunohistochemistry. J Vis Exp:e51018Google Scholar
  61. 61.
    Arey LB (1916) The movements in the visual cells and retinal pigment of the lower vertebrates. J Comp Neurol 26:121–201CrossRefGoogle Scholar
  62. 62.
    Jacobs GH, Neitz J, Deegan JF (1991) Retinal receptors in rodents maximally sensitive to ultraviolet light. Nature 353:655–656PubMedCrossRefGoogle Scholar
  63. 63.
    Wang J-S, Kefalov VJ (2011) The cone-specific visual cycle. Prog Retin Eye Res 30:115–128PubMedCrossRefGoogle Scholar
  64. 64.
    Li PH, Field GD, Greschner M et al (2014) Retinal representation of the elementary visual signal. Neuron 81:130–139PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Newman EA, Bartosch R (1999) An eyecup preparation for the rat and mouse. J Neurosci Meth 93:169–175Google Scholar
  66. 66.
    Boycott BB, Wässle H (1974) The morphological types of ganglion cells of the domestic cat’s retina. J Physiol 240:397–419PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Goodchild AK, Ghosh KK, Martin PR (1996) Comparison of photoreceptor spatial density and ganglion cell morphology in the retina of human, macaque monkey, cat, and the marmoset Callithrix jacchus. J Comp Neurol 366:55–75PubMedCrossRefGoogle Scholar
  68. 68.
    Peichl L (2005) Diversity of mammalian photoreceptor properties: adaptations to habitat and lifestyle? Anat Rec Part A Discov Mol Cell Evol Biol 287:1001–1012CrossRefGoogle Scholar
  69. 69.
    Szél A, Röhlich P, Caffé ARR et al (1992) Unique topographic separation of two spectral classes of cones in the mouse retina. J Comp Neurol 325:327–342PubMedCrossRefGoogle Scholar
  70. 70.
    Bleckert A, Schwartz GW, Turner MH et al (2014) Visual space is represented by nonmatching topographies of distinct mouse retinal ganglion cell types. Curr Biol 24:310–315PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Rousso DL, Qiao M, Kagan RD et al (2016) Two pairs of ON and OFF retinal ganglion cells are defined by intersectional patterns of transcription factor expression. Cell Rep 15:1930–1944PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Zhang Y, Kim I-J, Sanes JR et al (2012) The most numerous ganglion cell type of the mouse retina is a selective feature detector. Proc Natl Acad Sci USA 109:E2391–E2398PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Joesch M, Meister M (2016) A neuronal circuit for colour vision based on rod–cone opponency. Nature 532:236–239PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Wei W, Elstrott J, Feller MB (2010) Two-photon targeted recording of GFP-expressing neurons for light responses and live-cell imaging in the mouse retina. Nat Prot 5:1347–1352Google Scholar
  75. 75.
    Sterratt DC, Lyngholm D, Willshaw DJ et al (2013) Standard anatomical and visual space for the mouse retina: Computational reconstruction and transformation of flattened retinae with the Retistruct package. PLoS Comput Biol 9(2):e1002921PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Sabbah S, Gemmer JA, Bhatia-Lin A et al (2017) A retinal code for motion along the gravitational and body axes. Nature 546:492–497PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Schlichtenbrede FC, Mittmann W, Rensch F et al (2009) Toxicity assessment of intravitreal triamcinolone and bevacizumab in a retinal explant mouse model using two-photon microscopy. Invest Ophthalmol Vis Sci 50:5880–5887PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Lin MZ, Schnitzer MJ (2016) Genetically encoded indicators of neuronal activity. Nat Neurosci 19:1142–1153PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Bethge P, Carta S, Lorenzo DA et al (2017) An R-CaMP1.07 reporter mouse for cell-type-specific expression of a sensitive red fluorescent calcium indicator. PLoS One 12:e0179460PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Davidson BL, Breakefield XO (2003) Neurological diseases: viral vectors for gene delivery to the nervous system. Nat Rev Neurosci 4:353–364PubMedCrossRefGoogle Scholar
  81. 81.
    Vandenberghe LH, Auricchio A (2012) Novel adeno-associated viral vectors for retinal gene therapy. Gene Ther 19:162–168PubMedCrossRefGoogle Scholar
  82. 82.
    Zhao Y, Araki S, Wu J et al (2011) An expanded palette of genetically encoded Ca2+ indicators. Science 96333:1888–1891CrossRefGoogle Scholar
  83. 83.
    Dalkara D, Byrne LC, Klimczak RR et al (2013) In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci Transl Med 5:189ra76–189ra76PubMedCrossRefGoogle Scholar
  84. 84.
    Lavis LD (2017) Teaching old dyes new tricks: biological probes built from fluoresceins and rhodamines. Annu Rev Biochem 86:825–843PubMedCrossRefGoogle Scholar
  85. 85.
    Tada M, Takeuchi A, Hashizume M et al (2014) A highly sensitive fluorescent indicator dye for calcium imaging of neural activity in vitro and in vivo. Eur J Neurosci 39:1720–1728PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Chang L, Breuninger T, Euler T (2013) Chromatic coding from cone-type unselective circuits in the mouse retina. Neuron 77:559–571PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Wang YV, Weick M, Demb JB (2011) Spectral and temporal sensitivity of cone-mediated responses in mouse retinal ganglion cells. J Neurosci 31:7670–7681PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Healy K, McNally L, Ruxton GD et al (2013) Metabolic rate and body size are linked with perception of temporal information. Anim Behav 86:685–696PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Lamb TD (1995) Photoreceptor spectral sensitivities: common shape in the long-wavelength region. Vision Res 35:3083–3091PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Denk W, Svoboda K (1997) Photon upmanship: why multiphoton imaging is more than a gimmick. Neuron 18:351–357PubMedCrossRefGoogle Scholar
  91. 91.
    Lyubarsky AL, Daniele LL, Pugh EN Jr (2004) From candelas to photoisomerizations in the mouse eye by rhodopsin bleaching in situ and the light-rearing dependence of the major components of the mouse ERG. Vision Res 44:3235–3251PubMedCrossRefGoogle Scholar
  92. 92.
    Luo DG, Xue T, Yau KW (2008) How vision begins: an odyssey. Proc Natl Acad Sci U S A 105:9855–9862PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Gray-Keller M, Denk W, Shraiman B et al (1999) Longitudinal spread of second messenger signals in isolated rod outer segments of lizards. J Physiol 519(Pt 3):679–692PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Mank M, Reiff DF, Heim N et al (2006) A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change. Biophys J 90:1790–1796PubMedCrossRefGoogle Scholar
  95. 95.
    Zariwala HA, Borghuis BG, Hoogland TM et al (2012) A Cre-dependent GCaMP3 reporter mouse for neuronal imaging in vivo. J Neurosci 32:3131–3141PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Ophthalmic ResearchUniversity of TübingenTübingenGermany
  2. 2.Werner Reichardt Centre for Integrative Neuroscience (CIN)University of TübingenTübingenGermany
  3. 3.Bernstein Centre for Computational Neuroscience TübingenUniversity of TübingenTübingenGermany
  4. 4.School of Life SciencesUniversity of SussexBrightonUK

Personalised recommendations