Skip to main content

Rodent Infections for Chlamydia spp.

  • Protocol
  • First Online:
Chlamydia trachomatis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2042))

  • 968 Accesses

Abstract

Chlamydia spp. infections cause immunopathology of the male and female urogenital tracts and incidence continues to rise across the globe. Animal models offer the opportunity to study the host: pathogen relationship, with rodent models being an attractive first step in studying immune interactions, genetic knockout, as well as bacterial inhibitor and vaccine trials. Here we describe the methodology to infect both male and female rodents at various mucosal sites, with a particular focus on the reproductive tracts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO (2016) Sexually Transmitted Infections (STIs). Fact Sheets August 2016. Available from http://www.who.int/mediacentre/factsheets/fs110/en/

  2. WHO (2018) Trachoma: Fact Sheet February 2018. Available from: http://www.who.int/news-room/fact-sheets/detail/trachoma

  3. Zeidler H, Hudson AP (2016) Causality of Chlamydiae in arthritis and spondyloarthritis: a plea for increased translational research. Curr Rheumatol Rep 18(2):9

    Article  PubMed  Google Scholar 

  4. Choroszy-Krol I et al (2014) Infections caused by Chlamydophila pneumoniae. Adv Clin Exp Med 23(1):123–126

    Article  PubMed  Google Scholar 

  5. Nigg C (1942) An unidentified virus which produces pneumonia and systemic infection in mice. Science 95(2454):49–50

    Article  CAS  PubMed  Google Scholar 

  6. O’Meara CP, Andrew DW, Beagley KW (2014) The mouse model of Chlamydia genital tract infection: a review of infection, disease, immunity and vaccine development. Curr Mol Med 14(3):396–421

    Article  PubMed  CAS  Google Scholar 

  7. Murray ES (1964) Guinea pig inclusion conjunctivitis virus. I. Isolation and identification as a member of the psittacosis-lymphogranuloma-trachoma group. J Infect Dis 114:1–12

    Article  CAS  PubMed  Google Scholar 

  8. Rank RG et al (2003) Characterization of chlamydial genital infection resulting from sexual transmission from male to female guinea pigs and determination of infectious dose. Infect Immun 71(11):6148–6154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Howard L, Orenstein NS, King NW (1974) Purification on renografin density gradients of Chlamydia trachomatis grown in the yolk sac of eggs. Appl Microbiol 27(1):102–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pal S, Peterson EM, de la Maza LM (2004) New murine model for the study of Chlamydia trachomatis genitourinary tract infections in males. Infect Immun 72(7):4210–4216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mackern-Oberti JP et al (2011) Male rodent genital tract infection with Chlamydia muridarum: persistence in the prostate gland that triggers self-immune reactions in genetically susceptible hosts. J Urol 186(3):1100–1106

    Article  PubMed  Google Scholar 

  12. Motrich RD et al (2012) Male rat genital tract infection with Chlamydia muridarum has no significant consequence on male fertility. J Urol 187(5):1911–1917

    Article  PubMed  Google Scholar 

  13. O’Meara CP et al (2016) Induction of partial immunity in both males and females is sufficient to protect females against sexual transmission of Chlamydia. Mucosal Immunol 9(4):1076–1088

    Article  PubMed  CAS  Google Scholar 

  14. Rank RG et al (1981) Cystitis associated with chlamydial infection of the genital tract in male guinea pigs. Sex Transm Dis 8(3):203–210

    Article  CAS  PubMed  Google Scholar 

  15. Wang Y et al (2010) Local host response to chlamydial urethral infection in male guinea pigs. Infect Immun 78(4):1670–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Igietseme JU, Portis JL, Perry LL (2001) Inflammation and clearance of Chlamydia trachomatis in enteric and nonenteric mucosae. Infect Immun 69(3):1832–1840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Erkkila L et al (2008) Intragastric primary infection sensitizes to lung reinfection in a Chlamydia pneumoniae mouse model. Vaccine 26(20):2503–2509

    Article  PubMed  Google Scholar 

  18. Wang L et al (2016) The Chlamydia muridarum organisms fail to auto-inoculate the mouse genital tract after colonization in the gastrointestinal tract for 70 days. PLoS One 11(5):e0155880

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Campbell J et al (2014) Bioluminescence imaging of Chlamydia muridarum ascending infection in mice. PLoS One 9(7):e101634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Whittum-Hudson JA, O’Brien TP, Prendergast RA (1995) Murine model of ocular infection by a human biovar of Chlamydia trachomatis. Invest Ophthalmol Vis Sci 36(10):1976–1987

    CAS  PubMed  Google Scholar 

  21. Dai J et al (2016) Intravenous inoculation with Chlamydia muridarum leads to a long-lasting infection restricted to the gastrointestinal tract. Infect Immun 84(8):2382–2388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kollipara A et al (2016) Chlamydia infection in males; an underappreciated problem, in 13th Congress of the International Society for Immunology of Reproduction (ISIR) and the European Society for Reproductive Immunology (ESRI). J Reprod Immunol 52

    Google Scholar 

  23. Little CS et al (2004) Chlamydia pneumoniae induces Alzheimer-like amyloid plaques in brains of BALB/c mice. Neurobiol Aging 25(4):419–429

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Q et al (2015) In vivo and ex vivo imaging reveals a long-lasting chlamydial infection in the mouse gastrointestinal tract following genital tract inoculation. Infect Immun 83(9):3568–3577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rank RG et al (2008) Chlamydiae and polymorphonuclear leukocytes: unlikely allies in the spread of chlamydial infection. FEMS Immunol Med Microbiol 54(1):104–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Baillet AC et al (2015) High Chlamydia burden promotes tumor necrosis factor-dependent reactive arthritis in SKG mice. Arthritis Rheumatol 67(6):1535–1547

    Article  CAS  PubMed  Google Scholar 

  27. Nigg C, Eaton MD (1944) Isolation from normal mice of a pneumotropic virus which forms elementary bodies. J Exp Med 79(5):497–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ramsey KH, DeWolfe JL, Salyer RD (2000) Disease outcome subsequent to primary and secondary urogenital infection with murine or human biovars of Chlamydia trachomatis. Infect Immun 68(12):7186–7189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tuffrey M et al (1986) Infertility in mice infected genitally with a human strain of Chlamydia trachomatis. J Reprod Fertil 78(1):251–260

    Article  CAS  PubMed  Google Scholar 

  30. Tuffrey M et al (1986) Salpingitis in mice induced by human strains of Chlamydia trachomatis. Br J Exp Pathol 67(4):605–616

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gondek DC et al (2012) CD4+ T cells are necessary and sufficient to confer protection against Chlamydia trachomatis infection in the murine upper genital tract. J Immunol 189(5):2441–2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kaushic C et al (1998) Chlamydia trachomatis infection in the female reproductive tract of the rat: influence of progesterone on infectivity and immune response. Infect Immun 66(3):893–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kaushic C et al (2000) Effects of estradiol and progesterone on susceptibility and early immune responses to Chlamydia trachomatis infection in the female reproductive tract. Infect Immun 68(7):4207–4216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Barron AL et al (1979) Target tissues associated with genital infection of female guinea pigs by the chlamydial agent of guinea pig inclusion conjunctivitis. J Infect Dis 139(1):60–68

    Article  CAS  PubMed  Google Scholar 

  35. Rank RG, Sanders MM (1992) Pathogenesis of endometritis and salpingitis in a guinea pig model of chlamydial genital infection. Am J Pathol 140(4):927–936

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Rank RG, Sanders MM, Kidd AT (1993) Influence of the estrous cycle on the development of upper genital tract pathology as a result of chlamydial infection in the guinea pig model of pelvic inflammatory disease. Am J Pathol 142(4):1291–1296

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Gogolak FM (1953) Purification of murine pneumonitis virus from mouse lung. J Infect Dis 92(3):248–253

    Article  CAS  PubMed  Google Scholar 

  38. Gogolak FM (1953) A quantitative study of the infectivity of murine pneumonitis virus in mice infected in a cloud chamber of improved design. J Infect Dis 92(3):240–247

    Article  CAS  PubMed  Google Scholar 

  39. Kaukoranta-Tolvanen SS et al (1993) Experimental infection of Chlamydia pneumoniae in mice. Microb Pathog 15(4):293–302

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

KB is supported by NHMRC grants APP1083314 and APP1062198. KB and AJC are supported by NHMRC grant APP1145825. The authors thank Emily Bryan, Logan Trim, and David Van Der Heide for their assistance. CWA and AJC contributed equally.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth W. Beagley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Armitage, C.W., Carey, A.J., Beagley, K.W. (2019). Rodent Infections for Chlamydia spp.. In: Brown, A. (eds) Chlamydia trachomatis. Methods in Molecular Biology, vol 2042. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9694-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9694-0_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9693-3

  • Online ISBN: 978-1-4939-9694-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics