Skip to main content

Isolation and Propagation of Single Inclusion-Derived Chlamydia Using Laser Microdissection

  • Protocol
  • First Online:
  • 925 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2042))

Abstract

Other than its routine application for capturing pure cell populations from fixed tissue sections for diverse downstream molecular assays, laser microdissection enables isolation of single live cells. Here we describe a method for the isolation of single Chlamydia trachomatis-infected cells using a laser microdissection system, in which the dissected samples are captured via gravity. Cells infected by C. trachomatis at low multiplicity of infection are marked with the fluorescent Golgi-specific probe BODIPY® FL C5-ceramide, to facilitate identification of the cells with chlamydial inclusions under the microscope. Individual C. trachomatis-infected cells are harvested into separate wells with a pregrown host cell monolayer. Inclusions in harvested cells maturate, and the released elementary bodies infect the host cell monolayer, thus initiating propagation of single inclusion-derived Chlamydia. The method can be used for generation of microbiological clones of C. trachomatis and recovery of transformants and mutants. Isolated single Chlamydia-infected cells can also be examined by diverse downstream molecular assays to reveal unknown features of the Chlamydia replication at a single inclusion level.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Binet R, Maurelli AT (2009) Transformation and isolation of allelic exchange mutants of Chlamydia psittaci using recombinant DNA introduced by electroporation. Proc Natl Acad Sci U S A 106:292–297. https://doi.org/10.1073/pnas.0806768106

    Article  Google Scholar 

  2. Demars R, Weinfurter J, Guex E et al (2007) Lateral gene transfer in vitro in the intracellular pathogen Chlamydia trachomatis. J Bacteriol 189:991–1003. https://doi.org/10.1128/JB.00845-06

    Article  CAS  PubMed  Google Scholar 

  3. Lenart J, Andersen AA, Rockey DD (2001) Growth and development of tetracycline-resistant Chlamydia suis. Antimicrob Agents Chemother 45:2198–2203. https://doi.org/10.1128/AAC.45.8.2198-2203.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lowden NM, Yeruva L, Johnson CM et al (2015) Use of aminoglycoside 3′ adenyltransferase as a selection marker for Chlamydia trachomatis intron-mutagenesis and in vivo intron stability. BMC Res Notes 8:570. https://doi.org/10.1186/s13104-015-1542-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Suchland RJ, Sandoz KM, Jeffrey BM et al (2009) Horizontal transfer of tetracycline resistance among Chlamydia spp. in vitro. Antimicrob Agents Chemother 53:4604–4611. https://doi.org/10.1128/AAC.00477-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tam JE, Davis CH, Wyrick PB (1994) Expression of recombinant DNA introduced into Chlamydia trachomatis by electroporation. Can J Microbiol 40:583–591. https://doi.org/10.1139/m94-093

    Article  CAS  PubMed  Google Scholar 

  7. Thompson CC, Griffiths C, Nicod SS et al (2015) The Rsb phosphoregulatory network controls availability of the primary sigma factor in Chlamydia trachomatis and influences the kinetics of growth and development. PLoS Pathog 11:e1005125. https://doi.org/10.1371/journal.ppat.1005125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang Y, Kahane S, Cutcliffe LT et al (2011) Development of a transformation system for Chlamydia trachomatis: restoration of glycogen biosynthesis by acquisition of a plasmid shuttle vector. PLoS Pathog 7(9):e1002258. https://doi.org/10.1371/journal.ppat.1002258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Banks J, Eddie B, Schachter J, Meyer KF (1970) Plaque formation by Chlamydia in L cells. Infect Immun 1(3):259–262

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Matsumoto A, Izutsu H, Miyashita N, Ohuchi M (1998) Plaque formation by and plaque cloning of Chlamydia trachomatis biovar trachoma. J Clin Microbiol 36(10):3013–3019

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Somboonna N, Mead S, Liu J, Dean D (2008) Discovering and differentiating new and emerging clonal populations of Chlamydia trachomatis with a novel shotgun cell culture harvest assay. Emerg Infect Dis 14(3):445–453. https://doi.org/10.3201/eid1403.071071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gieffers J, Belland RJ, Whitmire W et al (2002) Isolation of Chlamydia pneumoniae clonal variants by a focus-forming assay. Infect Immun 70(10):5827–5834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Alzhanov DT, Suchland RJ, Bakke AC et al (2007) Clonal isolation of chlamydia-infected cells using flow cytometry. J Microbiol Methods 68(1):201–208. https://doi.org/10.1016/j.mimet.2006.07.012

    Article  CAS  PubMed  Google Scholar 

  14. Podgorny OV, Polina NF, Babenko VV et al (2015) Isolation of single Chlamydia-infected cells using laser microdissection. J Microbiol Methods 109:123–128. https://doi.org/10.1016/j.mimet.2014.12.018

    Article  CAS  PubMed  Google Scholar 

  15. Emmert-Buck MR, Bonner RF, Smith PD et al (1996) Laser capture microdissection. Science 274(5289):998–1001

    Article  CAS  PubMed  Google Scholar 

  16. Datta S, Malhotra L, Dickerson R et al (2015) Laser capture microdissection: big data from small samples. Histol Histopathol 30(11):1255–1269. https://doi.org/10.14670/HH-11-622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Espina V, Wulfkuhle JD, Calvert VS et al (2006) Laser-capture microdissection. Nat Protoc 1(2):586–603

    Article  CAS  PubMed  Google Scholar 

  18. Podgorny OV (2013) Live cell isolation by laser microdissection with gravity transfer. J Biomed Opt 18(5):55002. https://doi.org/10.1117/1.JBO.18.5.055002

    Article  PubMed  Google Scholar 

  19. Pagano RE, Sleight RG (1985) Defining lipid transport pathways in animal cells. Science 229(4718):1051–1057

    Article  CAS  PubMed  Google Scholar 

  20. Boleti H, Ojcius DM, Dautry-Varsat A (2000) Fluorescent labelling of intracellular bacteria in living host cells. J Microbiol Methods 40(3):265–274

    Article  CAS  PubMed  Google Scholar 

  21. Hackstadt T, Scidmore MA, Rockey DD (1995) Lipid metabolism in Chlamydia trachomatis-infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion. Proc Natl Acad Sci U S A 92(11):4877–4881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Scidmore MA (2005) Cultivation and laboratory maintenance of Chlamydia trachomatis. Curr Protoc Microbiol Chapter 11:Unit 11A.1. https://doi.org/10.1002/9780471729259.mc11a01s00

    Article  PubMed  Google Scholar 

  23. Phelan MC (2006) Techniques for mammalian cell tissue culture. Curr Protoc Hum Genet Appendix 3:Appendix 3G. https://doi.org/10.1002/0471142727

    Article  PubMed  Google Scholar 

  24. Phelan K, May KM (2017) Mammalian cell tissue culture. Curr Protoc Hum Genet 94:A.3G.1–A.3G.22. https://doi.org/10.1002/cphg.41

    Article  Google Scholar 

  25. Podgorny OV (2018) Live cell isolation by laser microdissection. Webinar available via BiteSizeBio. https://bitesizebio.com/webinar/live-cell-isolation-by-laser-microdissection/. Accessed 17 Oct 2018

Download references

Acknowledgements

The development of a method for the isolation of single Chlamydia-infected cells using laser microdissection was supported by the Russian Science Foundation (projects no. 17-75-20099 and 14-14-00696). O.V.P was partially supported by the IDB RAS Government basic research program no. 0108-2019-0005. Laser microdissection was performed using equipment of the Core Facility of Koltzov Institute of Developmental Biology RAS.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Podgorny, O.V., Polina, N.F., Lazarev, V.N. (2019). Isolation and Propagation of Single Inclusion-Derived Chlamydia Using Laser Microdissection. In: Brown, A. (eds) Chlamydia trachomatis. Methods in Molecular Biology, vol 2042. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9694-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9694-0_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9693-3

  • Online ISBN: 978-1-4939-9694-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics