Abstract
Nuclear magnetic resonance (NMR) spectroscopy is becoming increasingly automated. Most modern NMR spectrometers are now equipped with auto-tune/auto-match probes along with automated locking and shimming systems. Likewise, more and more instruments, especially for NMR-based metabolomics applications, are equipped with automated sample changers. All this instrumental automation allows NMR data to be collected at a rate of >100 samples/day. However, a continuing bottleneck in NMR-based metabolomics has been the time required to manually analyze and annotate the collected NMR spectra. In many cases, manual spectral annotation and analysis can take one or more hours per spectrum. Fortunately, over the past few years, several software tools have been developed that largely automate the spectral deconvolution or spectral annotation process. Using these tools requires that the samples must be prepared and the NMR spectra must be acquired in a very specific manner. In this chapter, we will describe the step-by-step preparation of biofluid samples along with the required protocols for acquiring optimal spectra for automated NMR metabolomics analysis. We will also discuss the use of three common tools (Chenomx NMR Suite, Bayesil, and COLMARm) for (semi-) automated profiling, and annotation of 1D- and 2D-NMR spectra of biofluids.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Nicholson JK, Wilson ID (2003) Opinion: understanding ’global’ systems biology: metabonomics and the continuum of metabolism. Nat Rev Drug Discov 2(8):668–676
Wishart DS (2008) Quantitative metabolomics using NMR. Trac Trend Anal Chem 27(3):228–237
Alonso A, Marsal S, Julia A (2015) Analytical methods in untargeted metabolomics: state of the art in 2015. Front Bioeng Biotechnol 3:23. https://doi.org/10.3389/fbioe.2015.00023
Mercier P, Lewis MJ, Chang D, Baker D, Wishart DS (2011) Towards automatic metabolomic profiling of high-resolution one-dimensional proton NMR spectra. J Biomol NMR 49(3–4):307–323
Monakhova YB, Schutz B, Schafer H, Spraul M, Kuballa T, Hahn H, Lachenmeier DW (2014) Validation studies for multicomponent quantitative NMR analysis: the example of apple fruit juice. Accred Qual Assur 19(1):17–29
Spraul M, Link M, Schaefer H, Fang F, Schuetz B (2015) Wine analysis to check quality and authenticity by fully-automated 1H-NMR. Bio Web Conf 5:02022. https://doi.org/10.1051/bioconf/20150502022
Hao J, Liebeke M, Astle W, De Iorio M, Bundy JG, Ebbels TM (2014) Bayesian deconvolution and quantification of metabolites in complex 1D NMR spectra using BATMAN. Nat Protoc 9(6):1416–1427
Ravanbakhsh S, Liu P, Bjorndahl TC, Mandal R, Grant JR, Wilson M, Eisner R, Sinelnikov I, Hu X, Luchinat C, Greiner R, Wishart DS (2015) Accurate, fully-automated NMR spectral profiling for metabolomics. PLoS One 10(5):e0124219. https://doi.org/10.1371/journal.pone.0124219
Rohnisch HE, Eriksson J, Mullner E, Agback P, Sandstrom C, Moazzami AA (2018) AQuA: an automated quantification algorithm for high-throughput NMR-based metabolomics and its application in human plasma. Anal Chem 90(3):2095–2102
Tardivel PJC, Canlet C, Lefort G, Tremblay-Franco M, Debrauwer L, Concordet D et al (2017) ASICS: an automatic method for identification and quantification of metabolites in complex 1D H-1 NMR spectra. Metabolomics 13(10):ARTN 109. https://doi.org/10.1007/s11306-017-1244-5
Canueto D, Gomez J, Salek RM, Correig X, Canellas N (2018) rDolphin: a GUI R package for proficient automatic profiling of 1D H-1-NMR spectra of study datasets. Metabolomics 14(3):ARTN 24. https://doi.org/10.1007/s11306-018-1319-y
Lewis IA, Schommer SC, Markley JL (2009) rNMR: open source software for identifying and quantifying metabolites in NMR spectra. Magn Reson Chem 47:S123–S126
Bingol K, Li DW, Bruschweiler-Li L, Cabrera OA, Megraw T, Zhang FL et al (2015) Unified and isomer-specific NMR metabolomics database for the accurate analysis of C-13-H-1 HSQC spectra. ACS Chem Biol 10(2):452–459
Bingol K, Bruschweiler-Li L, Li DW, Bruschweiler R (2014) Customized metabolomics database for the analysis of NMR H-1-H-1 TOCSY and C-13-H-1 HSQC-TOCSY spectra of complex mixtures. Anal Chem 86(11):5494–5501
Zheng C, Zhang SC, Ragg S, Raftery D, Vitek O (2011) Identification and quantification of metabolites in H-1 NMR spectra by Bayesian model selection. Bioinformatics 27(12):1637–1644
Bingol K, Li DW, Zhang B, Bruschweiler R (2016) Comprehensive metabolite identification strategy using multiple two-dimensional NMR spectra of a complex mixture implemented in the COLMARm web server. Anal Chem 88(24):12411–12418
Teng Q, Huang WL, Collette TW, Ekman DR, Tan C (2009) A direct cell quenching method for cell-culture based metabolomics. Metabolomics 5(2):199–208
Sellick CA, Hansen R, Maqsood AR, Dunn WB, Stephens GM, Goodacre R et al (2009) Effective quenching processes for physiologically valid metabolite profiling of suspension cultured mammalian cells. Anal Chem 81(1):174–183
Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) Nmrpipe–a multidimensional spectral processing system based on unix pipes. J Biomol NMR 6(3):277–293
Helmus JJ, Jaroniec CP (2013) Nmrglue: an open source python package for the analysis of multidimensional NMR data. J Biomol NMR 55(4):355–367
Psychogios N, Hau DD, Peng J, Guo AC, Mandal R, Bouatra S et al (2011) The human serum metabolome. PLoS One 6(2):ARTN e16957. https://doi.org/10.1371/journal.pone.0016957
Wishart DS, Lewis MJ, Morrissey JA, Flegel MD, Jeroncic K, Xiong YP et al (2008) The human cerebrospinal fluid metabolome. J Chromatogr B 871(2):164–173
Dame ZT, Aziat F, Mandal R, Krishnamurthy R, Bouatra S, Borzouie S et al (2015) The human saliva metabolome. Metabolomics 11(6):1864–1883
Lee W, Tonelli M, Markley JL (2015) NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31(8):1325–1327
Chong J, Soufan O, Li C, Caraus I, Li SZ, Bourque G et al (2018) MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res 46(W1):W486–W494
Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vazquez-Fresno R et al (2018) HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 46(D1):D608–D617. https://doi.org/10.1093/nar/gkx1089
Goldansaz SA, Guo AC, Sajed T, Steele MA, Plastow GS, Wishart DS (2017) Livestock metabolomics and the livestock metabolome: a systematic review. PLoS One 12(5):ARTN e0177675. https://doi.org/10.1371/journal.pone.0177675
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Lipfert, M., Rout, M.K., Berjanskii, M., Wishart, D.S. (2019). Automated Tools for the Analysis of 1D-NMR and 2D-NMR Spectra. In: Gowda, G., Raftery, D. (eds) NMR-Based Metabolomics. Methods in Molecular Biology, vol 2037. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9690-2_24
Download citation
DOI: https://doi.org/10.1007/978-1-4939-9690-2_24
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-4939-9689-6
Online ISBN: 978-1-4939-9690-2
eBook Packages: Springer Protocols